Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
resources.py 14.08 KiB
import re
from typing import Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union

import matplotlib.pyplot as plt
import networkx as nx
from matplotlib.axes import Axes
from matplotlib.markers import MarkerStyle
from matplotlib.ticker import MaxNLocator

from b_asic._preferences import LATENCY_COLOR
from b_asic.process import Process

# Default latency coloring RGB tuple
_LATENCY_COLOR = tuple(c / 255 for c in LATENCY_COLOR)

#
# Human-intuitive sorting:
# https://stackoverflow.com/questions/2669059/how-to-sort-alpha-numeric-set-in-python
#
# Typing '_T' to help Pyright propagate type-information
#
_T = TypeVar('_T')


def _sorted_nicely(to_be_sorted: Iterable[_T]) -> List[_T]:
    """Sort the given iterable in the way that humans expect."""
    convert = lambda text: int(text) if text.isdigit() else text
    alphanum_key = lambda key: [
        convert(c) for c in re.split('([0-9]+)', str(key))
    ]
    return sorted(to_be_sorted, key=alphanum_key)


def draw_exclusion_graph_coloring(
    exclusion_graph: nx.Graph,
    color_dict: Dict[Process, int],
    ax: Optional[Axes] = None,
    color_list: Optional[
        Union[List[str], List[Tuple[float, float, float]]]
    ] = None,
):
    """
    Use matplotlib.pyplot and networkx to draw a colored exclusion graph from the memory assignment

    .. code-block:: python

        _, ax = plt.subplots(1, 1)
        collection = ProcessCollection(...)
        exclusion_graph = collection.create_exclusion_graph_from_overlap()
        color_dict = nx.greedy_color(exclusion_graph)
        draw_exclusion_graph_coloring(exclusion_graph, color_dict, ax=ax[0])
        plt.show()

    Parameters
    ----------
    exclusion_graph : nx.Graph
        A nx.Graph exclusion graph object that is to be drawn.

    color_dict : dictionary
        A color dictionary where keys are Process objects and where values are integers representing colors. These
        dictionaries are automatically generated by :func:`networkx.algorithms.coloring.greedy_color`.

    ax : :class:`matplotlib.axes.Axes`, optional
        A Matplotlib Axes object to draw the exclusion graph

    color_list : Optional[Union[List[str], List[Tuple[float,float,float]]]]
    """
    COLOR_LIST = [
        '#aa0000',
        '#00aa00',
        '#0000ff',
        '#ff00aa',
        '#ffaa00',
        '#00ffaa',
        '#aaff00',
        '#aa00ff',
        '#00aaff',
        '#ff0000',
        '#00ff00',
        '#0000aa',
        '#aaaa00',
        '#aa00aa',
        '#00aaaa',
    ]
    if color_list is None:
        node_color_dict = {k: COLOR_LIST[v] for k, v in color_dict.items()}
    else:
        node_color_dict = {k: color_list[v] for k, v in color_dict.items()}
    node_color_list = [node_color_dict[node] for node in exclusion_graph]
    nx.draw_networkx(
        exclusion_graph,
        node_color=node_color_list,
        ax=ax,
        pos=nx.spring_layout(exclusion_graph, seed=1),
    )


class ProcessCollection:
    """
    Collection of one or more processes

    Parameters
    ----------
    collection : set of :class:`~b_asic.process.Process` objects
        The Process objects forming this ProcessCollection.
    schedule_time : int
        Length of the time-axis in the generated graph.
    cyclic : bool, default: False
        If the processes operates cyclically, i.e., if time 0 == time *schedule_time*.
    """

    def __init__(
        self,
        collection: Set[Process],
        schedule_time: int,
        cyclic: bool = False,
    ):
        self._collection = collection
        self._schedule_time = schedule_time
        self._cyclic = cyclic

    def add_process(self, process: Process):
        """
        Add a new process to this process collection.

        Parameters
        ----------
        process : Process
            The process object to be added to the collection
        """
        self._collection.add(process)

    def draw_lifetime_chart(
        self,
        ax: Optional[Axes] = None,
        show_name: bool = True,
        bar_color: Union[str, Tuple[float, ...]] = _LATENCY_COLOR,
        marker_color: Union[str, Tuple[float, ...]] = "black",
        marker_read: str = "X",
        marker_write: str = "o",
        show_markers: bool = True,
    ):
        """
        Use matplotlib.pyplot to generate a process variable lifetime chart from this process collection.

        Parameters
        ----------
        ax : :class:`matplotlib.axes.Axes`, optional
            Matplotlib Axes object to draw this lifetime chart onto. If not provided (i.e., set to None),
            this method will return a new axes object on return.
        show_name : bool, default: True
            Show name of all processes in the lifetime chart.
        bar_color : color, optional
            Bar color in lifetime chart.
        marker_color : color, default 'black'
            Color for read and write marker.
        marker_write : str, default 'x'
            Marker at write time in the lifetime chart.
        marker_read : str, default 'o'
            Marker at read time in the lifetime chart.
        show_markers : bool, default True
            Show markers at read and write times.

        Returns
        -------
            ax: Associated Matplotlib Axes (or array of Axes) object
        """

        # Set up the Axes object
        if ax is None:
            _, _ax = plt.subplots()
        else:
            _ax = ax

        # Lifetime chart left and right padding
        PAD_L, PAD_R = 0.05, 0.05
        max_execution_time = max(
            process.execution_time for process in self._collection
        )
        if max_execution_time > self._schedule_time:
            # Schedule time needs to be greater than or equal to the maximum process lifetime
            raise KeyError(
                f'Error: Schedule time: {self._schedule_time} < Max execution'
                f' time: {max_execution_time}'
            )

        # Generate the life-time chart
        for i, process in enumerate(_sorted_nicely(self._collection)):
            bar_start = process.start_time % self._schedule_time
            bar_end = (
                process.start_time + process.execution_time
            ) % self._schedule_time
            bar_end = self._schedule_time if bar_end == 0 else bar_end
            if show_markers:
                _ax.scatter(
                    x=bar_start,
                    y=i + 1,
                    marker=marker_write,
                    color=marker_color,
                    zorder=10,
                )
                _ax.scatter(
                    x=bar_end,
                    y=i + 1,
                    marker=marker_read,
                    color=marker_color,
                    zorder=10,
                )
            if bar_end >= bar_start:
                _ax.broken_barh(
                    [(PAD_L + bar_start, bar_end - bar_start - PAD_L - PAD_R)],
                    (i + 0.55, 0.9),
                    color=bar_color,
                )
            else:  # bar_end < bar_start
                _ax.broken_barh(
                    [
                        (
                            PAD_L + bar_start,
                            self._schedule_time - bar_start - PAD_L,
                        )
                    ],
                    (i + 0.55, 0.9),
                    color=bar_color,
                )
                _ax.broken_barh(
                    [(0, bar_end - PAD_R)], (i + 0.55, 0.9), color=bar_color
                )
            if show_name:
                _ax.annotate(
                    str(process),
                    (bar_start + PAD_L + 0.025, i + 1.00),
                    va="center",
                )
        _ax.grid(True)

        _ax.xaxis.set_major_locator(MaxNLocator(integer=True))
        _ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        _ax.set_xlim(0, self._schedule_time)
        _ax.set_ylim(0.25, len(self._collection) + 0.75)
        return _ax

    def create_exclusion_graph_from_overlap(
        self, add_name: bool = True
    ) -> nx.Graph:
        """
        Generate exclusion graph based on processes overlapping in time

        Parameters
        ----------
        add_name : bool, default: True
            Add name of all processes as a node attribute in the exclusion graph.

        Returns
        -------
            An nx.Graph exclusion graph where nodes are processes and arcs
            between two processes indicated overlap in time
        """
        exclusion_graph = nx.Graph()
        exclusion_graph.add_nodes_from(self._collection)
        for process1 in self._collection:
            for process2 in self._collection:
                if process1 == process2:
                    continue
                else:
                    t1 = set(
                        range(
                            process1.start_time,
                            process1.start_time + process1.execution_time,
                        )
                    )
                    t2 = set(
                        range(
                            process2.start_time,
                            process2.start_time + process2.execution_time,
                        )
                    )
                    if t1.intersection(t2):
                        exclusion_graph.add_edge(process1, process2)
        return exclusion_graph

    def split(
        self,
        heuristic: str = "graph_color",
        read_ports: Optional[int] = None,
        write_ports: Optional[int] = None,
        total_ports: Optional[int] = None,
    ) -> Set["ProcessCollection"]:
        """
        Split this process storage based on some heuristic.

        Parameters
        ----------
        heuristic : str, default: "graph_color"
            The heuristic used when splitting this ProcessCollection.
            Valid options are:
                * "graph_color"
                * "..."
        read_ports : int, optional
            The number of read ports used when splitting process collection based on memory variable access.
        write_ports : int, optional
            The number of write ports used when splitting process collection based on memory variable access.
        total_ports : int, optional
            The total number of ports used when splitting process collection based on memory variable access.

        Returns
        -------
        A set of new ProcessCollection objects with the process splitting.
        """
        if total_ports is None:
            if read_ports is None or write_ports is None:
                raise ValueError("inteligent quote")
            else:
                total_ports = read_ports + write_ports
        else:
            read_ports = total_ports if read_ports is None else read_ports
            write_ports = total_ports if write_ports is None else write_ports

        if heuristic == "graph_color":
            return self._split_graph_color(
                read_ports, write_ports, total_ports
            )
        else:
            raise ValueError("Invalid heuristic provided")

    def _split_graph_color(
        self, read_ports: int, write_ports: int, total_ports: int
    ) -> Set["ProcessCollection"]:
        """
        Parameters
        ----------
        read_ports : int, optional
            The number of read ports used when splitting process collection based on memory variable access.
        write_ports : int, optional
            The number of write ports used when splitting process collection based on memory variable access.
        total_ports : int, optional
            The total number of ports used when splitting process collection based on memory variable access.
        """
        if read_ports != 1 or write_ports != 1:
            raise ValueError(
                "Splitting with read and write ports not equal to one with the"
                " graph coloring heuristic does not make sense."
            )
        if total_ports not in (1, 2):
            raise ValueError(
                "Total ports should be either 1 (non-concurrent reads/writes)"
                " or 2 (concurrent read/writes) for graph coloring heuristic."
            )

        # Create new exclusion graph. Nodes are Processes
        exclusion_graph = nx.Graph()
        exclusion_graph.add_nodes_from(self._collection)

        # Add exclusions (arcs) between processes in the exclusion graph
        for node1 in exclusion_graph:
            for node2 in exclusion_graph:
                if node1 == node2:
                    continue
                else:
                    node1_stop_time = node1.start_time + node1.execution_time
                    node2_stop_time = node2.start_time + node2.execution_time
                    if total_ports == 1:
                        # Single-port assignment
                        if node1.start_time == node2.start_time:
                            exclusion_graph.add_edge(node1, node2)
                        elif node1_stop_time == node2_stop_time:
                            exclusion_graph.add_edge(node1, node2)
                        elif node1.start_time == node2_stop_time:
                            exclusion_graph.add_edge(node1, node2)
                        elif node1_stop_time == node2.start_time:
                            exclusion_graph.add_edge(node1, node2)
                    else:
                        # Dual-port assignment
                        if node1.start_time == node2.start_time:
                            exclusion_graph.add_edge(node1, node2)
                        elif node1_stop_time == node2_stop_time:
                            exclusion_graph.add_edge(node1, node2)

        # Perform assignment
        coloring = nx.coloring.greedy_color(exclusion_graph)
        draw_exclusion_graph_coloring(exclusion_graph, coloring)
        # process_collection_list = [ProcessCollection()]*(max(coloring.values()) + 1)
        process_collection_set_list = [
            set() for _ in range(max(coloring.values()) + 1)
        ]
        for process, color in coloring.items():
            process_collection_set_list[color].add(process)
        return {
            ProcessCollection(
                process_collection_set, self._schedule_time, self._cyclic
            )
            for process_collection_set in process_collection_set_list
        }