Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
### Seting paths
```
MODEL_NAME=nnunet_for_pytorch
MODEL_VERSION=21.11.0
MODEL_BASE=/proj/nsc_testing/xuan/containers/nvidia_pytorch_21.11-py3.sif
CONTAINER_DIR=/proj/nsc_testing/xuan/containers/${MODEL_NAME}_${MODEL_VERSION}.sif
DEF_DIR=/proj/nsc_testing/xuan/berzelius-benchmarks/NVIDIA/DeepLearningExamples/PyTorch/Segmentation/nnUNet/${MODEL_NAME}_${MODEL_VERSION}.def
WORK_DIR=/proj/nsc_testing/xuan/berzelius-benchmarks/NVIDIA/DeepLearningExamples/PyTorch/Segmentation/nnUNet
```
### Building the container
```
apptainer build $MODEL_BASE docker://nvcr.io/nvidia/pytorch:21.11-py3
apptainer build $CONTAINER_DIR $DEF_DIR
```
### Downloading and preprocessing the data
```
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python download.py --task 01
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python /workspace/nnunet_pyt/preprocess.py --task 01 --dim 2
```
### Running benchmarking
```
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python scripts/benchmark.py --mode train --gpus 1 --dim 2 --batch_size 256 --amp
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python scripts/benchmark.py --mode predict --gpus 1 --dim 2 --batch_size 256 --amp
```
### Running benchmarking using batch jobs
```
bash submit_benchmark_jobs.sh
```