### Seting paths ``` MODEL_NAME=nnunet_for_pytorch MODEL_VERSION=21.11.0 MODEL_BASE=/proj/nsc_testing/xuan/containers/nvidia_pytorch_21.11-py3.sif CONTAINER_DIR=/proj/nsc_testing/xuan/containers/${MODEL_NAME}_${MODEL_VERSION}.sif DEF_DIR=/proj/nsc_testing/xuan/berzelius-benchmarks/NVIDIA/DeepLearningExamples/PyTorch/Segmentation/nnUNet/${MODEL_NAME}_${MODEL_VERSION}.def WORK_DIR=/proj/nsc_testing/xuan/berzelius-benchmarks/NVIDIA/DeepLearningExamples/PyTorch/Segmentation/nnUNet ``` ### Building the container ``` apptainer build $MODEL_BASE docker://nvcr.io/nvidia/pytorch:21.11-py3 apptainer build $CONTAINER_DIR $DEF_DIR ``` ### Downloading and preprocessing the data ``` apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python download.py --task 01 apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python /workspace/nnunet_pyt/preprocess.py --task 01 --dim 2 ``` ### Running benchmarking ``` apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python scripts/benchmark.py --mode train --gpus 1 --dim 2 --batch_size 256 --amp apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python scripts/benchmark.py --mode predict --gpus 1 --dim 2 --batch_size 256 --amp ``` ### Running benchmarking using batch jobs ``` bash submit_benchmark_jobs.sh ```