Skip to content
Snippets Groups Projects
Commit a79cfd99 authored by Simon Bjurek's avatar Simon Bjurek
Browse files

ldlt inverse now verified for matrices up to and including size 3x3

parent c864f803
No related branches found
No related tags found
1 merge request!469Add matrix inversion sfg generator
......@@ -116,6 +116,7 @@ TODO.txt
b_asic/_version.py
docs_sphinx/_build/
docs_sphinx/examples
docs_sphinx/sg_execution_times.rst
result_images/
.coverage
Digraph.gv
......
......@@ -1123,7 +1123,7 @@ class MADS(AbstractOperation):
def __init__(
self,
is_add: Optional[bool] = False,
is_add: Optional[bool] = True,
src0: Optional[SignalSourceProvider] = None,
src1: Optional[SignalSourceProvider] = None,
src2: Optional[SignalSourceProvider] = None,
......@@ -1142,15 +1142,24 @@ class MADS(AbstractOperation):
latency_offsets=latency_offsets,
execution_time=execution_time,
)
self._is_add = is_add
# self.set_param("is_add", is_add)
self.set_param("is_add", is_add)
@classmethod
def type_name(cls) -> TypeName:
return TypeName("mads")
def evaluate(self, a, b, c):
return a + b * c if self._is_add else a - b * c
return a + b * c if self.is_add else a - b * c
@property
def is_add(self) -> bool:
"""Get if operation is an addition."""
return self.param("is_add")
@is_add.setter
def is_add(self, is_add: bool) -> None:
"""Set if operation is an addition."""
self.set_param("is_add", is_add)
@property
def is_linear(self) -> bool:
......
......@@ -456,40 +456,41 @@ def ldlt_matrix_inverse(N: int, is_complex: bool) -> SFG:
# R*di*R^T factorization
for i in range(N):
for k in range(1, i):
D[i] = MADS(False, D[i], M[k][i], R[k][i])
for k in range(i):
D[i] = MADS(False, D[i], M[k][i], R[k][i], name="M1")
D_inv[i] = Reciprocal(D[i])
for j in range(i, N):
for j in range(i + 1, N):
R[i][j] = A[i][j]
for k in range(1, i):
R[i][j] = MADS(False, R[i][j], M[k][i], R[k][j])
for k in range(i):
R[i][j] = MADS(False, R[i][j], M[k][i], R[k][j], name="M2")
if is_complex:
M[i][j] = ComplexConjugate(R[i][j])
else:
M[i][j] = R[i][j]
R[i][j] = MADS(True, Constant(0, name="0"), R[i][j], D_inv[i])
R[i][j] = MADS(True, Constant(0, name="0"), R[i][j], D_inv[i], name="M3")
# back substitution
A_inv = [[None for _ in range(N)] for _ in range(N)]
for i in reversed(range(N)):
A_inv[i][i] = D_inv[i]
for j in reversed(range(i)):
for k in reversed(range(j, N)):
for j in reversed(range(i + 1)):
for k in reversed(range(j + 1, N)):
if k == N - 1 and i != j:
# my custom
if A_inv[k][i]:
A_inv[j][i] = MADS(
False, Constant(0, name="0"), R[j][k], A_inv[i][k], name="M4"
)
else:
if A_inv[i][k]:
A_inv[j][i] = MADS(
False, Constant(0, name="0"), R[j][k], A_inv[k][i]
False, A_inv[j][i], R[j][k], A_inv[i][k], name="M5"
)
else:
A_inv[j][i] = Constant(0, name="0")
else:
A_inv[j][i] = MADS(False, A_inv[j][i], R[j][k], A_inv[k][i])
A_inv[j][i] = MADS(False, A_inv[j][i], R[j][k], A_inv[k][i])
outputs = []
for i in range(N):
......
......@@ -12,6 +12,7 @@ from b_asic.sfg_generators import (
direct_form_1_iir,
direct_form_2_iir,
direct_form_fir,
ldlt_matrix_inverse,
radix_2_dif_fft,
transposed_direct_form_fir,
wdf_allpass,
......@@ -637,3 +638,58 @@ class TestRadix2FFT:
POINTS = 5
with pytest.raises(ValueError, match="Points must be a power of two."):
radix_2_dif_fft(points=POINTS)
class TestLdltMatrixInverse:
def test_1x1(self):
sfg = ldlt_matrix_inverse(N=1, is_complex=False)
A_input = [Constant(5)]
sim = Simulation(sfg, A_input)
sim.run_for(1)
res = sim.results
assert np.isclose(res["0"], 0.2)
def test_2x2_simple_spd(self):
sfg = ldlt_matrix_inverse(N=2, is_complex=False)
A = np.array([[1, 2], [2, 1]])
A_input = [Constant(1), Constant(2), Constant(1)]
A_inv = np.linalg.inv(A)
sim = Simulation(sfg, A_input)
sim.run_for(1)
res = sim.results
assert np.isclose(res["0"], A_inv[0, 0])
assert np.isclose(res["1"], A_inv[0, 1])
assert np.isclose(res["2"], A_inv[1, 1])
def test_3x3_simple_spd(self):
sfg = ldlt_matrix_inverse(N=3, is_complex=False)
A = np.array([[2, -1, 0], [-1, 3, -1], [0, -1, 2]])
A_input = [
Constant(2),
Constant(-1),
Constant(0),
Constant(3),
Constant(-1),
Constant(2),
]
A_inv = np.linalg.inv(A)
sim = Simulation(sfg, A_input)
sim.run_for(1)
res = sim.results
assert np.isclose(res["0"], A_inv[0, 0])
assert np.isclose(res["1"], A_inv[0, 1])
assert np.isclose(res["2"], A_inv[0, 2])
assert np.isclose(res["3"], A_inv[1, 1])
assert np.isclose(res["4"], A_inv[1, 2])
assert np.isclose(res["5"], A_inv[2, 2])
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment