Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
Berzelius Benchmarks
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Xuan Gu
Berzelius Benchmarks
Commits
afe017e0
Commit
afe017e0
authored
1 year ago
by
Xuan Gu
Browse files
Options
Downloads
Patches
Plain Diff
Update 2 files
- /scripts/copy_data_for_benchmark.sh - /README.md
parent
7c28d77b
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
README.md
+37
-18
37 additions, 18 deletions
README.md
scripts/copy_data_for_benchmark.sh
+2
-0
2 additions, 0 deletions
scripts/copy_data_for_benchmark.sh
with
39 additions
and
18 deletions
README.md
+
37
−
18
View file @
afe017e0
# Benchmark_nnU-Net_for_PyTorch
Benchmark of nnU-Net for PyTorch on Berzelius
# Benchmark of nnU-Net for PyTorch on Berzelius
It is based on the Nvidia NGC recipe of nnU-net for Pytorch.
Latest Version 21.11.0
Modified February 3, 2022
See
[
NVIDIA Deep Learning Examples
](
https://catalog.ngc.nvidia.com/orgs/nvidia/resources/nnunet_for_pytorch
)
.
### On local computer
-
Clone the repository
The benchmarking is based on
[
Nvidia NGC nnU-net for Pytorch
](
https://catalog.ngc.nvidia.com/orgs/nvidia/resources/nnunet_for_pytorch
)
v21.11.0.
### On local computer (optional)
-
Download the code
```
wget --content-disposition https://api.ngc.nvidia.com/v2/resources/nvidia/nnunet_for_pytorch/versions/21.11.0/zip -O /tmp/nnunet_for_pytorch_21.11.0.zip
mkdir /samsung1t/ngc/nnunet_for_pytorch_21.11.0
...
...
@@ -15,7 +12,7 @@ unzip /tmp/nnunet_for_pytorch_21.11.0.zip -d /samsung1t/ngc/nnunet_for_pytorch_2
cd /samsung1t/ngc/nnunet_for_pytorch_21.11.0/
```
-
Build the nnU-Net PyTorch
NGC
container
-
Build the nnU-Net PyTorch
Docker
container
```
docker build -t nnunet .
```
...
...
@@ -28,19 +25,41 @@ docker push xuagu37/nvidia_nnu-net_for_pytorch:21.11.0
### On Berzelius
-
Clone the repository
-
Create directories
```
mkdir -p /proj/nsc_testing/xuan/nnUnet_benchmark
cd /proj/nsc_testing/xuan/nnUnet_benchmark
mkdir data results
```
<!-- - Clone the repository
```
cd /proj/nsc/xuan/ngc
cd /proj/nsc
_testing
/xuan/ngc
git clone https://github.com/NVIDIA/DeepLearningExamples
cd
/proj/nsc/xuan/ngc/
DeepLearningExamples/PyTorch/Segmentation/nnUNet
cd DeepLearningExamples/PyTorch/Segmentation/nnUNet
mkdir data results
```
-->
Docker is not available on Berzelius. We us Apptainer or Enroot.
-
Prepare the dataset
With Apptainer
```
-
Pull from xuagu37 and run the image
apptainer pull nvidia_nnu-net_for_pytorch.sif docker://xuagu37/nvidia_nnu-net_for_pytorch:21.11.0
apptainer exec --nv -B ${PWD}/data:/data -B ${PWD}/results:/results --nv nvidia_nnu-net_for_pytorch.sif bash -c "cd /workspace/nnunet_pyt && python download.py --task 01 && python preprocess.py --task 01 --dim 2"
```
Using singularity
With Enroot
```
enroot import 'docker://xuagu37/nvidia_nnu-net_for_pytorch:21.11.0'
enroot create --name nnunet xuagu37+nvidia_nnu-net_for_pytorch+21.11.0.sqsh
enroot start --rw --mount ${PWD}/data:/data --mount ${PWD}/results:/results nnunet bash -c "cd /workspace/nnunet_pyt && python download.py --task 01 && python preprocess.py --task 01 --dim 2"
```
<!-- Using singularity
```
singularity pull nvidia_nnu-net_for_pytorch.sif docker://xuagu37/nvidia_nnu-net_for_pytorch:21.11.0
singularity shell -B ${PWD}/data:/data -B ${PWD}/results:/results --nv nvidia_nnu-net_for_pytorch.sif
singularity shell -B ${PWD}/data:/data -B ${PWD}/results:/results --nv nvidia_nnu-net_for_pytorch.sif
```
Or using enroot
```
...
...
@@ -53,11 +72,11 @@ enroot start --rw --mount ${PWD}/data:/data --mount ${PWD}/results:/results nnun
python download.py --task 01
python preprocess.py --task 01 --dim 2
```
Exit the image.
Exit the image.
-->
-
For benchmarking purpose, we use 1000 copied of a single image
```
mkdir data_orig
cp -a data/* data_orig/
bash copy_data_for_benchmark.sh
```
-
Run the script.
...
...
This diff is collapsed.
Click to expand it.
scripts/copy_data_for_benchmark.sh
+
2
−
0
View file @
afe017e0
mkdir
data_orig
cp
-a
data/
*
data_orig/
cd
data/01_2d
for
i
in
{
0..9
}
;
do
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment