Setting paths
MODEL_NAME=nnunet_for_pytorch
MODEL_VERSION=21.11.0
MODEL_BASE=/proj/nsc_testing/xuan/containers/nvidia_pytorch_21.11-py3.sif
CONTAINER_DIR=/proj/nsc_testing/xuan/containers/${MODEL_NAME}_${MODEL_VERSION}.sif
DEF_DIR=/proj/nsc_testing/xuan/berzelius-benchmarks/NVIDIA/DeepLearningExamples/PyTorch/Segmentation/nnUNet/${MODEL_NAME}_${MODEL_VERSION}.def
WORK_DIR=/proj/nsc_testing/xuan/berzelius-benchmarks/NVIDIA/DeepLearningExamples/PyTorch/Segmentation/nnUNet
Building the container
apptainer build $MODEL_BASE docker://nvcr.io/nvidia/pytorch:21.11-py3
apptainer build $CONTAINER_DIR $DEF_DIR
Downloading and preprocessing the data
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python download.py --task 01
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python /workspace/nnunet_pyt/preprocess.py --task 01 --dim 2
Running benchmarking
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python scripts/benchmark.py --mode train --gpus 1 --dim 2 --batch_size 256 --amp
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python scripts/benchmark.py --mode predict --gpus 1 --dim 2 --batch_size 256 --amp
Running benchmarking using batch jobs
bash submit_benchmark_jobs.sh
Known issues
Isssue 1 (21.11.0)
https://github.com/NVIDIA/DeepLearningExamples/issues/1113
When running the container, an error occurred:
ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data' (/opt/conda/lib/python3.8/site-packages/torchmetrics/utilities/data.py)
Solution 1 (not working): pip install pytorch-lightning==1.5.10
.
Another error raised when benchmarking predict:
Traceback (most recent call last):
File "main.py", line 110, in <module>
trainer.current_epoch = 1
AttributeError: can't set attribute
Solution 2: pip install torchmetrics==0.6.0
.
Another error raised: File "main.py", line 34, in set_affinity(int(os.getenv("LOCAL_RANK", "0")), args.gpus, mode=args.affinity) File "/workspace/nnunet_pyt/utils/gpu_affinity.py", line 376, in set_affinity set_socket_unique_affinity(gpu_id, nproc_per_node, cores, "contiguous", balanced) File "/workspace/nnunet_pyt/utils/gpu_affinity.py", line 263, in set_socket_unique_affinity os.sched_setaffinity(0, ungrouped_affinities[gpu_id]) OSError: [Errno 22] Invalid argument
We need to comment out the L32-33 in the main.py
to fix it.
Issue 2 (21.11.0)
Muiti-node jobs is not supported yet in 21.11.0 but only in the latest (nightly) version.
Issue 3 (latest)
ImportError: cannot import name '_compare_version' from 'torchmetrics.utilities.imports
Solution: pip install torchmetrics==0.11.4
.