Newer
Older
MODEL_BASE=/proj/nsc_testing/xuan/containers/nvidia_pytorch_21.11-py3.sif
CONTAINER_DIR=/proj/nsc_testing/xuan/containers/${MODEL_NAME}_${MODEL_VERSION}.sif
DEF_DIR=/proj/nsc_testing/xuan/berzelius-benchmarks/NVIDIA/DeepLearningExamples/PyTorch/Segmentation/nnUNet/${MODEL_NAME}_${MODEL_VERSION}.def
WORK_DIR=/proj/nsc_testing/xuan/berzelius-benchmarks/NVIDIA/DeepLearningExamples/PyTorch/Segmentation/nnUNet/nnunet_pyt
```
### Building the container
```
apptainer build $MODEL_BASE docker://nvcr.io/nvidia/pytorch:21.11-py3
apptainer build $CONTAINER_DIR $DEF_DIR
```
### Make a copy of the code
```
apptainer exec $CONTAINER_DIR bash -c "cp -a /workspace/nnunet_pyt/* ${WORK_DIR}"
```
### Downloading and preprocessing the data
```
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python download.py --task 01
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python /workspace/nnunet_pyt/preprocess.py --task 01 --dim 2
```
### Running benchmarking
```
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python scripts/benchmark.py --mode train --gpus 1 --dim 2 --batch_size 256 --amp
apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python scripts/benchmark.py --mode predict --gpus 1 --dim 2 --batch_size 256 --amp
```
### Running benchmarking using batch jobs
```
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
```
### Known issues
#### Isssue 1 (21.11.0)
https://github.com/NVIDIA/DeepLearningExamples/issues/1113
When running the container, an error occurred:
```
ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data' (/opt/conda/lib/python3.8/site-packages/torchmetrics/utilities/data.py)
```
Solution 1 (not working): `pip install pytorch-lightning==1.5.10`.
Another error raised when benchmarking predict:
```
Traceback (most recent call last):
File "main.py", line 110, in <module>
trainer.current_epoch = 1
AttributeError: can't set attribute
```
Solution 2: `pip install torchmetrics==0.6.0`.
Another error raised:
File "main.py", line 34, in <module>
set_affinity(int(os.getenv("LOCAL_RANK", "0")), args.gpus, mode=args.affinity)
File "/workspace/nnunet_pyt/utils/gpu_affinity.py", line 376, in set_affinity
set_socket_unique_affinity(gpu_id, nproc_per_node, cores, "contiguous", balanced)
File "/workspace/nnunet_pyt/utils/gpu_affinity.py", line 263, in set_socket_unique_affinity
os.sched_setaffinity(0, ungrouped_affinities[gpu_id])
OSError: [Errno 22] Invalid argument
We need to comment out the L32-33 in the `main.py` to fix it.
#### Issue 2 (21.11.0)
Muiti-node jobs is not supported yet in 21.11.0 but only in the latest (nightly) version.
#### Issue 3 (latest)
```
ImportError: cannot import name '_compare_version' from 'torchmetrics.utilities.imports
```