"c:\\Users\\maxbj\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\huggingface_hub\\file_download.py:123: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\maxbj\\.cache\\huggingface\\hub. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.weight', 'cls.predictions.bias']\n",
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
"File \u001b[1;32mc:\\Users\\maxbj\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\torch\\nn\\modules\\module.py:1130\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *input, **kwargs)\u001b[0m\n\u001b[0;32m 1126\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m 1127\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m 1128\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m 1129\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1130\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39m\u001b[39minput\u001b[39m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m 1131\u001b[0m \u001b[39m# Do not call functions when jit is used\u001b[39;00m\n\u001b[0;32m 1132\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[39m=\u001b[39m [], []\n",
"File \u001b[1;32mc:\\Users\\maxbj\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\torch\\serialization.py:930\u001b[0m, in \u001b[0;36m_legacy_load\u001b[1;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[0;32m 929\u001b[0m unpickler\u001b[39m.\u001b[39mpersistent_load \u001b[39m=\u001b[39m persistent_load\n\u001b[1;32m--> 930\u001b[0m result \u001b[39m=\u001b[39m unpickler\u001b[39m.\u001b[39;49mload()\n\u001b[0;32m 932\u001b[0m deserialized_storage_keys \u001b[39m=\u001b[39m pickle_module\u001b[39m.\u001b[39mload(f, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mpickle_load_args)\n",
"\u001b[1;31mRuntimeError\u001b[0m: [enforce fail at C:\\actions-runner\\_work\\pytorch\\pytorch\\builder\\windows\\pytorch\\c10\\core\\impl\\alloc_cpu.cpp:81] data. DefaultCPUAllocator: not enough memory: you tried to allocate 93763584 bytes.",
"\u001b[1;31mRuntimeError\u001b[0m: 0D or 1D target tensor expected, multi-target not supported"
"\nDuring handling of the above exception, another exception occurred:\n",
"File \u001b[1;32mc:\\Users\\maxbj\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\transformers\\modeling_utils.py:2184\u001b[0m, in \u001b[0;36mPreTrainedModel.from_pretrained\u001b[1;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[0;32m 2181\u001b[0m \u001b[39mif\u001b[39;00m from_pt:\n\u001b[0;32m 2182\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m is_sharded \u001b[39mand\u001b[39;00m state_dict \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 2183\u001b[0m \u001b[39m# Time to load the checkpoint\u001b[39;00m\n\u001b[1;32m-> 2184\u001b[0m state_dict \u001b[39m=\u001b[39m load_state_dict(resolved_archive_file)\n\u001b[0;32m 2186\u001b[0m \u001b[39m# set dtype to instantiate the model under:\u001b[39;00m\n\u001b[0;32m 2187\u001b[0m \u001b[39m# 1. If torch_dtype is not None, we use that dtype\u001b[39;00m\n\u001b[0;32m 2188\u001b[0m \u001b[39m# 2. If torch_dtype is \"auto\", we auto-detect dtype from the loaded state_dict, by checking its first\u001b[39;00m\n\u001b[0;32m 2189\u001b[0m \u001b[39m# weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype\u001b[39;00m\n\u001b[0;32m 2190\u001b[0m \u001b[39m# we also may have config.torch_dtype available, but we won't rely on it till v5\u001b[39;00m\n\u001b[0;32m 2191\u001b[0m dtype_orig \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\maxbj\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\transformers\\modeling_utils.py:403\u001b[0m, in \u001b[0;36mload_state_dict\u001b[1;34m(checkpoint_file)\u001b[0m\n\u001b[0;32m 401\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m 402\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mopen\u001b[39m(checkpoint_file) \u001b[39mas\u001b[39;00m f:\n\u001b[1;32m--> 403\u001b[0m \u001b[39mif\u001b[39;00m f\u001b[39m.\u001b[39;49mread()\u001b[39m.\u001b[39mstartswith(\u001b[39m\"\u001b[39m\u001b[39mversion\u001b[39m\u001b[39m\"\u001b[39m):\n\u001b[0;32m 404\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mOSError\u001b[39;00m(\n\u001b[0;32m 405\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mYou seem to have cloned a repository without having git-lfs installed. Please install \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 406\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mgit-lfs and run `git lfs install` followed by `git lfs pull` in the folder \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 407\u001b[0m \u001b[39m\"\u001b[39m\u001b[39myou cloned.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 408\u001b[0m )\n\u001b[0;32m 409\u001b[0m \u001b[39melse\u001b[39;00m:\n",
c:\Users\maxbj\AppData\Local\Programs\Python\Python39\lib\site-packages\huggingface_hub\file_download.py:123: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\Users\maxbj\.cache\huggingface\hub. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.
To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.weight', 'cls.predictions.bias']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
1129 or _global_forward_hooks or _global_forward_pre_hooks):
File c:\Users\maxbj\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\serialization.py:871, in _legacy_load.<locals>.persistent_load(saved_id)
File c:\Users\maxbj\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\nn\modules\loss.py:1164, in CrossEntropyLoss.forward(self, input, target)
RuntimeError: [enforce fail at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\c10\core\impl\alloc_cpu.cpp:81] data. DefaultCPUAllocator: not enough memory: you tried to allocate 93763584 bytes.