Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
Codebase
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
TDDE19-2022-1
Codebase
Commits
94e82338
Commit
94e82338
authored
2 years ago
by
Ludwig Forsberg
Browse files
Options
Downloads
Patches
Plain Diff
Improved evaluate.py
parent
7480f27c
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
customTrainer.py
+533
-0
533 additions, 0 deletions
customTrainer.py
evaluate.py
+67
-25
67 additions, 25 deletions
evaluate.py
with
600 additions
and
25 deletions
customTrainer.py
0 → 100644
+
533
−
0
View file @
94e82338
from
transformers
import
Seq2SeqTrainer
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task.
"""
import
contextlib
import
functools
import
glob
import
inspect
import
math
import
os
import
random
import
re
import
shutil
import
sys
import
time
import
warnings
from
collections.abc
import
Mapping
from
pathlib
import
Path
from
typing
import
TYPE_CHECKING
,
Any
,
Callable
,
Dict
,
List
,
Optional
,
Tuple
,
Union
from
tqdm.auto
import
tqdm
# Integrations must be imported before ML frameworks:
from
transformers.integrations
import
(
# isort: split
default_hp_search_backend
,
get_reporting_integration_callbacks
,
hp_params
,
is_fairscale_available
,
is_optuna_available
,
is_ray_tune_available
,
is_sigopt_available
,
is_wandb_available
,
run_hp_search_optuna
,
run_hp_search_ray
,
run_hp_search_sigopt
,
run_hp_search_wandb
,
)
import
numpy
as
np
import
torch
import
torch.distributed
as
dist
from
packaging
import
version
from
torch
import
nn
from
torch.utils.data
import
DataLoader
,
Dataset
,
RandomSampler
,
SequentialSampler
from
torch.utils.data.distributed
import
DistributedSampler
from
huggingface_hub
import
Repository
from
transformers
import
__version__
from
transformers.configuration_utils
import
PretrainedConfig
from
transformers.data.data_collator
import
DataCollator
,
DataCollatorWithPadding
,
default_data_collator
from
transformers.debug_utils
import
DebugOption
,
DebugUnderflowOverflow
from
transformers.deepspeed
import
deepspeed_init
,
is_deepspeed_zero3_enabled
from
transformers.dependency_versions_check
import
dep_version_check
from
transformers.modelcard
import
TrainingSummary
from
transformers.modeling_utils
import
PreTrainedModel
,
load_sharded_checkpoint
,
unwrap_model
from
transformers.models.auto.modeling_auto
import
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
,
MODEL_MAPPING_NAMES
from
transformers.optimization
import
Adafactor
,
get_scheduler
from
transformers.pytorch_utils
import
(
ALL_LAYERNORM_LAYERS
,
is_torch_greater_or_equal_than_1_6
,
is_torch_greater_or_equal_than_1_10
,
is_torch_less_than_1_11
,
)
from
transformers.tokenization_utils_base
import
PreTrainedTokenizerBase
from
transformers.trainer_callback
import
(
CallbackHandler
,
DefaultFlowCallback
,
PrinterCallback
,
ProgressCallback
,
TrainerCallback
,
TrainerControl
,
TrainerState
,
)
from
transformers.trainer_pt_utils
import
(
DistributedLengthGroupedSampler
,
DistributedSamplerWithLoop
,
DistributedTensorGatherer
,
IterableDatasetShard
,
LabelSmoother
,
LengthGroupedSampler
,
SequentialDistributedSampler
,
ShardSampler
,
distributed_broadcast_scalars
,
distributed_concat
,
find_batch_size
,
get_module_class_from_name
,
get_parameter_names
,
nested_concat
,
nested_detach
,
nested_numpify
,
nested_truncate
,
nested_xla_mesh_reduce
,
reissue_pt_warnings
,
)
from
transformers.trainer_utils
import
(
PREFIX_CHECKPOINT_DIR
,
BestRun
,
EvalLoopOutput
,
EvalPrediction
,
FSDPOption
,
HPSearchBackend
,
HubStrategy
,
IntervalStrategy
,
PredictionOutput
,
RemoveColumnsCollator
,
ShardedDDPOption
,
TrainerMemoryTracker
,
TrainOutput
,
default_compute_objective
,
default_hp_space
,
denumpify_detensorize
,
enable_full_determinism
,
find_executable_batch_size
,
get_last_checkpoint
,
has_length
,
number_of_arguments
,
seed_worker
,
set_seed
,
speed_metrics
,
)
from
transformers.training_args
import
OptimizerNames
,
ParallelMode
,
TrainingArguments
from
transformers.utils
import
(
CONFIG_NAME
,
WEIGHTS_INDEX_NAME
,
WEIGHTS_NAME
,
find_labels
,
get_full_repo_name
,
is_apex_available
,
is_datasets_available
,
is_in_notebook
,
is_ipex_available
,
is_sagemaker_dp_enabled
,
is_sagemaker_mp_enabled
,
is_torch_tensorrt_fx_available
,
is_torch_tpu_available
,
is_torchdynamo_available
,
logging
,
)
from
transformers.utils.generic
import
ContextManagers
_is_torch_generator_available
=
False
_is_native_cuda_amp_available
=
False
_is_native_cpu_amp_available
=
False
DEFAULT_CALLBACKS
=
[
DefaultFlowCallback
]
DEFAULT_PROGRESS_CALLBACK
=
ProgressCallback
if
is_in_notebook
():
from
transformers.utils.notebook
import
NotebookProgressCallback
DEFAULT_PROGRESS_CALLBACK
=
NotebookProgressCallback
if
is_torch_greater_or_equal_than_1_6
:
_is_torch_generator_available
=
True
_is_native_cuda_amp_available
=
True
if
is_torch_greater_or_equal_than_1_10
:
_is_native_cpu_amp_available
=
True
if
is_datasets_available
():
import
datasets
IS_SAGEMAKER_MP_POST_1_10
=
False
logger
=
logging
.
get_logger
(
__name__
)
# Name of the files used for checkpointing
TRAINING_ARGS_NAME
=
"
training_args.bin
"
TRAINER_STATE_NAME
=
"
trainer_state.json
"
OPTIMIZER_NAME
=
"
optimizer.pt
"
SCHEDULER_NAME
=
"
scheduler.pt
"
SCALER_NAME
=
"
scaler.pt
"
class
CustomTrainer
(
Seq2SeqTrainer
):
def
set_epoch_callback
(
self
,
func
):
self
.
epoch_callback
=
func
def
_inner_training_loop
(
self
,
batch_size
=
None
,
args
=
None
,
resume_from_checkpoint
=
None
,
trial
=
None
,
ignore_keys_for_eval
=
None
):
self
.
_train_batch_size
=
batch_size
# Data loader and number of training steps
train_dataloader
=
self
.
get_train_dataloader
()
# Setting up training control variables:
# number of training epochs: num_train_epochs
# number of training steps per epoch: num_update_steps_per_epoch
# total number of training steps to execute: max_steps
total_train_batch_size
=
args
.
train_batch_size
*
args
.
gradient_accumulation_steps
*
args
.
world_size
len_dataloader
=
None
if
has_length
(
train_dataloader
):
len_dataloader
=
len
(
train_dataloader
)
num_update_steps_per_epoch
=
len_dataloader
//
args
.
gradient_accumulation_steps
num_update_steps_per_epoch
=
max
(
num_update_steps_per_epoch
,
1
)
num_examples
=
self
.
num_examples
(
train_dataloader
)
if
args
.
max_steps
>
0
:
max_steps
=
args
.
max_steps
num_train_epochs
=
args
.
max_steps
//
num_update_steps_per_epoch
+
int
(
args
.
max_steps
%
num_update_steps_per_epoch
>
0
)
# May be slightly incorrect if the last batch in the training dataloader has a smaller size but it's
# the best we can do.
num_train_samples
=
args
.
max_steps
*
total_train_batch_size
else
:
max_steps
=
math
.
ceil
(
args
.
num_train_epochs
*
num_update_steps_per_epoch
)
num_train_epochs
=
math
.
ceil
(
args
.
num_train_epochs
)
num_train_samples
=
self
.
num_examples
(
train_dataloader
)
*
args
.
num_train_epochs
elif
args
.
max_steps
>
0
:
# Rely on max_steps when dataloader does not have a working size
max_steps
=
args
.
max_steps
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
num_train_epochs
=
sys
.
maxsize
num_update_steps_per_epoch
=
max_steps
num_examples
=
total_train_batch_size
*
args
.
max_steps
num_train_samples
=
args
.
max_steps
*
total_train_batch_size
else
:
raise
ValueError
(
"
args.max_steps must be set to a positive value if dataloader does not have a length, was
"
f
"
{
args
.
max_steps
}
"
)
if
DebugOption
.
UNDERFLOW_OVERFLOW
in
self
.
args
.
debug
:
if
self
.
args
.
n_gpu
>
1
:
# nn.DataParallel(model) replicates the model, creating new variables and module
# references registered here no longer work on other gpus, breaking the module
raise
ValueError
(
"
Currently --debug underflow_overflow is not supported under DP. Please use DDP
"
"
(torch.distributed.launch).
"
)
else
:
debug_overflow
=
DebugUnderflowOverflow
(
self
.
model
)
# noqa
delay_optimizer_creation
=
(
self
.
sharded_ddp
is
not
None
and
self
.
sharded_ddp
!=
ShardedDDPOption
.
SIMPLE
or
is_sagemaker_mp_enabled
()
or
self
.
fsdp
is
not
None
)
if
args
.
deepspeed
:
deepspeed_engine
,
optimizer
,
lr_scheduler
=
deepspeed_init
(
self
,
num_training_steps
=
max_steps
,
resume_from_checkpoint
=
resume_from_checkpoint
)
self
.
model
=
deepspeed_engine
.
module
self
.
model_wrapped
=
deepspeed_engine
self
.
deepspeed
=
deepspeed_engine
self
.
optimizer
=
optimizer
self
.
lr_scheduler
=
lr_scheduler
elif
not
delay_optimizer_creation
:
self
.
create_optimizer_and_scheduler
(
num_training_steps
=
max_steps
)
self
.
state
=
TrainerState
()
self
.
state
.
is_hyper_param_search
=
trial
is
not
None
# Activate gradient checkpointing if needed
if
args
.
gradient_checkpointing
:
self
.
model
.
gradient_checkpointing_enable
()
model
=
self
.
_wrap_model
(
self
.
model_wrapped
)
if
is_sagemaker_mp_enabled
()
and
resume_from_checkpoint
is
not
None
:
self
.
_load_from_checkpoint
(
resume_from_checkpoint
,
model
)
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if
model
is
not
self
.
model
:
self
.
model_wrapped
=
model
if
delay_optimizer_creation
:
self
.
create_optimizer_and_scheduler
(
num_training_steps
=
max_steps
)
# Check if saved optimizer or scheduler states exist
self
.
_load_optimizer_and_scheduler
(
resume_from_checkpoint
)
# important: at this point:
# self.model is the Transformers Model
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
# Train!
logger
.
info
(
"
***** Running training *****
"
)
logger
.
info
(
f
"
Num examples =
{
num_examples
}
"
)
logger
.
info
(
f
"
Num Epochs =
{
num_train_epochs
}
"
)
logger
.
info
(
f
"
Instantaneous batch size per device =
{
args
.
per_device_train_batch_size
}
"
)
logger
.
info
(
f
"
Total train batch size (w. parallel, distributed & accumulation) =
{
total_train_batch_size
}
"
)
logger
.
info
(
f
"
Gradient Accumulation steps =
{
args
.
gradient_accumulation_steps
}
"
)
logger
.
info
(
f
"
Total optimization steps =
{
max_steps
}
"
)
self
.
state
.
epoch
=
0
start_time
=
time
.
time
()
epochs_trained
=
0
steps_trained_in_current_epoch
=
0
steps_trained_progress_bar
=
None
# Check if continuing training from a checkpoint
if
resume_from_checkpoint
is
not
None
and
os
.
path
.
isfile
(
os
.
path
.
join
(
resume_from_checkpoint
,
TRAINER_STATE_NAME
)
):
self
.
state
=
TrainerState
.
load_from_json
(
os
.
path
.
join
(
resume_from_checkpoint
,
TRAINER_STATE_NAME
))
epochs_trained
=
self
.
state
.
global_step
//
num_update_steps_per_epoch
if
not
args
.
ignore_data_skip
:
steps_trained_in_current_epoch
=
self
.
state
.
global_step
%
(
num_update_steps_per_epoch
)
steps_trained_in_current_epoch
*=
args
.
gradient_accumulation_steps
else
:
steps_trained_in_current_epoch
=
0
logger
.
info
(
"
Continuing training from checkpoint, will skip to saved global_step
"
)
logger
.
info
(
f
"
Continuing training from epoch
{
epochs_trained
}
"
)
logger
.
info
(
f
"
Continuing training from global step
{
self
.
state
.
global_step
}
"
)
if
not
args
.
ignore_data_skip
:
logger
.
info
(
f
"
Will skip the first
{
epochs_trained
}
epochs then the first
{
steps_trained_in_current_epoch
}
"
"
batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip`
"
"
flag to your launch command, but you will resume the training on data already seen by your model.
"
)
if
self
.
is_local_process_zero
()
and
not
args
.
disable_tqdm
:
steps_trained_progress_bar
=
tqdm
(
total
=
steps_trained_in_current_epoch
)
steps_trained_progress_bar
.
set_description
(
"
Skipping the first batches
"
)
# Update the references
self
.
callback_handler
.
model
=
self
.
model
self
.
callback_handler
.
optimizer
=
self
.
optimizer
self
.
callback_handler
.
lr_scheduler
=
self
.
lr_scheduler
self
.
callback_handler
.
train_dataloader
=
train_dataloader
self
.
state
.
trial_name
=
self
.
hp_name
(
trial
)
if
self
.
hp_name
is
not
None
else
None
if
trial
is
not
None
:
assignments
=
trial
.
assignments
if
self
.
hp_search_backend
==
HPSearchBackend
.
SIGOPT
else
trial
self
.
state
.
trial_params
=
hp_params
(
assignments
)
else
:
self
.
state
.
trial_params
=
None
# This should be the same if the state has been saved but in case the training arguments changed, it's safer
# to set this after the load.
self
.
state
.
max_steps
=
max_steps
self
.
state
.
num_train_epochs
=
num_train_epochs
self
.
state
.
is_local_process_zero
=
self
.
is_local_process_zero
()
self
.
state
.
is_world_process_zero
=
self
.
is_world_process_zero
()
# tr_loss is a tensor to avoid synchronization of TPUs through .item()
tr_loss
=
torch
.
tensor
(
0.0
).
to
(
args
.
device
)
# _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
self
.
_total_loss_scalar
=
0.0
self
.
_globalstep_last_logged
=
self
.
state
.
global_step
model
.
zero_grad
()
self
.
control
=
self
.
callback_handler
.
on_train_begin
(
args
,
self
.
state
,
self
.
control
)
# Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
if
not
args
.
ignore_data_skip
:
for
epoch
in
range
(
epochs_trained
):
is_random_sampler
=
hasattr
(
train_dataloader
,
"
sampler
"
)
and
isinstance
(
train_dataloader
.
sampler
,
RandomSampler
)
if
is_torch_less_than_1_11
or
not
is_random_sampler
:
# We just need to begin an iteration to create the randomization of the sampler.
# That was before PyTorch 1.11 however...
for
_
in
train_dataloader
:
break
else
:
# Otherwise we need to call the whooooole sampler cause there is some random operation added
# AT THE VERY END!
_
=
list
(
train_dataloader
.
sampler
)
for
epoch
in
range
(
epochs_trained
,
num_train_epochs
):
if
isinstance
(
train_dataloader
,
DataLoader
)
and
isinstance
(
train_dataloader
.
sampler
,
DistributedSampler
):
train_dataloader
.
sampler
.
set_epoch
(
epoch
)
elif
hasattr
(
train_dataloader
,
"
dataset
"
)
and
isinstance
(
train_dataloader
.
dataset
,
IterableDatasetShard
):
train_dataloader
.
dataset
.
set_epoch
(
epoch
)
epoch_iterator
=
train_dataloader
# Reset the past mems state at the beginning of each epoch if necessary.
if
args
.
past_index
>=
0
:
self
.
_past
=
None
steps_in_epoch
=
(
len
(
epoch_iterator
)
if
len_dataloader
is
not
None
else
args
.
max_steps
*
args
.
gradient_accumulation_steps
)
self
.
control
=
self
.
callback_handler
.
on_epoch_begin
(
args
,
self
.
state
,
self
.
control
)
if
epoch
==
epochs_trained
and
resume_from_checkpoint
is
not
None
and
steps_trained_in_current_epoch
==
0
:
self
.
_load_rng_state
(
resume_from_checkpoint
)
step
=
-
1
for
step
,
inputs
in
enumerate
(
epoch_iterator
):
# Skip past any already trained steps if resuming training
if
steps_trained_in_current_epoch
>
0
:
steps_trained_in_current_epoch
-=
1
if
steps_trained_progress_bar
is
not
None
:
steps_trained_progress_bar
.
update
(
1
)
if
steps_trained_in_current_epoch
==
0
:
self
.
_load_rng_state
(
resume_from_checkpoint
)
continue
elif
steps_trained_progress_bar
is
not
None
:
steps_trained_progress_bar
.
close
()
steps_trained_progress_bar
=
None
if
step
%
args
.
gradient_accumulation_steps
==
0
:
self
.
control
=
self
.
callback_handler
.
on_step_begin
(
args
,
self
.
state
,
self
.
control
)
if
(
((
step
+
1
)
%
args
.
gradient_accumulation_steps
!=
0
)
and
args
.
local_rank
!=
-
1
and
args
.
_no_sync_in_gradient_accumulation
):
# Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
with
model
.
no_sync
():
tr_loss_step
=
self
.
training_step
(
model
,
inputs
)
else
:
tr_loss_step
=
self
.
training_step
(
model
,
inputs
)
if
(
args
.
logging_nan_inf_filter
and
not
is_torch_tpu_available
()
and
(
torch
.
isnan
(
tr_loss_step
)
or
torch
.
isinf
(
tr_loss_step
))
):
# if loss is nan or inf simply add the average of previous logged losses
tr_loss
+=
tr_loss
/
(
1
+
self
.
state
.
global_step
-
self
.
_globalstep_last_logged
)
else
:
tr_loss
+=
tr_loss_step
self
.
current_flos
+=
float
(
self
.
floating_point_ops
(
inputs
))
# Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps
if
self
.
deepspeed
:
self
.
deepspeed
.
step
()
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
or
(
# last step in epoch but step is always smaller than gradient_accumulation_steps
steps_in_epoch
<=
args
.
gradient_accumulation_steps
and
(
step
+
1
)
==
steps_in_epoch
):
# Optimizer step
optimizer_was_run
=
True
if
self
.
deepspeed
:
pass
# called outside the loop
elif
self
.
do_grad_scaling
:
scale_before
=
self
.
scaler
.
get_scale
()
self
.
scaler
.
step
(
self
.
optimizer
)
self
.
scaler
.
update
()
scale_after
=
self
.
scaler
.
get_scale
()
optimizer_was_run
=
scale_before
<=
scale_after
else
:
self
.
optimizer
.
step
()
if
optimizer_was_run
and
not
self
.
deepspeed
:
self
.
lr_scheduler
.
step
()
model
.
zero_grad
()
self
.
state
.
global_step
+=
1
self
.
state
.
epoch
=
epoch
+
(
step
+
1
)
/
steps_in_epoch
self
.
control
=
self
.
callback_handler
.
on_step_end
(
args
,
self
.
state
,
self
.
control
)
self
.
_maybe_log_save_evaluate
(
tr_loss
,
model
,
trial
,
epoch
,
ignore_keys_for_eval
)
else
:
self
.
control
=
self
.
callback_handler
.
on_substep_end
(
args
,
self
.
state
,
self
.
control
)
if
self
.
control
.
should_epoch_stop
or
self
.
control
.
should_training_stop
:
break
if
step
<
0
:
logger
.
warning
(
"
There seems to be not a single sample in your epoch_iterator, stopping training at step
"
f
"
{
self
.
state
.
global_step
}
! This is expected if you
'
re using an IterableDataset and set
"
f
"
num_steps (
{
max_steps
}
) higher than the number of available samples.
"
)
self
.
control
.
should_training_stop
=
True
self
.
control
=
self
.
callback_handler
.
on_epoch_end
(
args
,
self
.
state
,
self
.
control
)
self
.
_maybe_log_save_evaluate
(
tr_loss
,
model
,
trial
,
epoch
,
ignore_keys_for_eval
)
if
DebugOption
.
TPU_METRICS_DEBUG
in
self
.
args
.
debug
:
logger
.
warning
(
"
You enabled PyTorch/XLA debug metrics but you don
'
t have a TPU
"
"
configured. Check your training configuration if this is unexpected.
"
)
print
(
"
EPOCH DONE
"
)
print
(
self
.
epoch_callback
)
if
self
.
epoch_callback
:
self
.
epoch_callback
()
if
self
.
control
.
should_training_stop
:
break
if
args
.
past_index
and
hasattr
(
self
,
"
_past
"
):
# Clean the state at the end of training
delattr
(
self
,
"
_past
"
)
logger
.
info
(
"
\n\n
Training completed. Do not forget to share your model on huggingface.co/models =)
\n\n
"
)
# add remaining tr_loss
self
.
_total_loss_scalar
+=
tr_loss
.
item
()
train_loss
=
self
.
_total_loss_scalar
/
self
.
state
.
global_step
metrics
=
speed_metrics
(
"
train
"
,
start_time
,
num_samples
=
num_train_samples
,
num_steps
=
self
.
state
.
max_steps
)
self
.
store_flos
()
metrics
[
"
total_flos
"
]
=
self
.
state
.
total_flos
metrics
[
"
train_loss
"
]
=
train_loss
self
.
is_in_train
=
False
self
.
_memory_tracker
.
stop_and_update_metrics
(
metrics
)
self
.
log
(
metrics
)
self
.
control
=
self
.
callback_handler
.
on_train_end
(
args
,
self
.
state
,
self
.
control
)
return
TrainOutput
(
self
.
state
.
global_step
,
train_loss
,
metrics
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
evaluate.py
+
67
−
25
View file @
94e82338
import
sys
import
tqdm
from
customTrainer
import
CustomTrainer
from
data
import
eval_query
as
eq
from
data
import
pred_query_responses
as
pqr
from
transformers
import
BartTokenizer
,
BartForConditionalGeneration
...
...
@@ -93,31 +94,12 @@ if __name__ == "__main__":
train_dataset
=
get_dataset
(
train_tok_path
)
u
=
0
for
i
in
range
(
int
(
epochs
)):
training_args
=
Seq2SeqTrainingArguments
(
output_dir
=
'
./trained-models/blackbox
'
,
num_train_epochs
=
i
+
1
,
per_device_train_batch_size
=
1
,
per_device_eval_batch_size
=
1
,
warmup_steps
=
10
,
weight_decay
=
0.01
,
logging_dir
=
'
./logs
'
,
)
trainer
=
Seq2SeqTrainer
(
model
=
model
,
args
=
training_args
,
train_dataset
=
train_dataset
)
trainer
.
train
()
pred_path
=
output
+
"
-
"
+
str
(
i
+
1
)
+
"
.csv
"
def
predict
():
global
u
u
+=
1
pred_path
=
output
+
"
-
"
+
str
(
u
)
+
"
.csv
"
with
open
(
test_tok_path
,
"
r
"
,
encoding
=
"
utf-8
"
)
as
f
,
open
(
pred_path
,
"
w
"
,
encoding
=
"
utf-8
"
)
as
out
:
test_data
=
csv
.
reader
(
f
,
delimiter
=
"
,
"
)
next
(
test_data
)
...
...
@@ -131,7 +113,6 @@ if __name__ == "__main__":
out
.
write
(
f
"
\"
{
question
}
\"
,
\"
{
predicted
}
\"\n
"
)
pbar
.
update
(
1
)
pbar
.
close
()
dump_path
=
pred_path
.
replace
(
"
predicted
"
,
"
pred_responses
"
).
replace
(
"
.csv
"
,
"
.json
"
)
pqr
.
build_responsefile
(
dump_path
,
test_path
,
pred_path
)
print
(
"
Evaluation againts server results
"
)
...
...
@@ -156,6 +137,67 @@ if __name__ == "__main__":
f
.
write
(
f
"
Recall micro:
{
recall_micro_query
}
\n
"
)
f
.
write
(
f
"
F1 micro:
{
f1_micro_query
}
\n
"
)
f
.
write
(
f
"
Fully correct:
{
fully_correct_query
}
\n\n
"
)
#for i in range(int(epochs)):
training_args
=
Seq2SeqTrainingArguments
(
output_dir
=
'
./trained-models/blackbox
'
,
num_train_epochs
=
int
(
epochs
),
per_device_train_batch_size
=
1
,
per_device_eval_batch_size
=
1
,
warmup_steps
=
10
,
weight_decay
=
0.01
,
logging_dir
=
'
./logs
'
)
trainer
=
CustomTrainer
(
model
=
model
,
args
=
training_args
,
train_dataset
=
train_dataset
,
)
trainer
.
set_epoch_callback
(
predict
)
trainer
.
train
()
#pred_path = output + "-" + str(i+1) + ".csv"
#with open(test_tok_path, "r", encoding="utf-8") as f, open(pred_path, "w", encoding="utf-8") as out:
# test_data = csv.reader(f, delimiter=",")
# next(test_data)
# test_data = list(test_data)
# test_data = [q[0] for q in test_data]
# out.write("text,summary\n")
# print("Runs predicted queries")
# pbar = tqdm.tqdm(total=len(test_data))
# for i, question in enumerate(test_data):
# predicted = gsq.predict_query(question, model, tokenizer)
# out.write(f"\"{question}\",\"{predicted}\"\n")
# pbar.update(1)
# pbar.close()
#
#dump_path = pred_path.replace("predicted", "pred_responses").replace(".csv", ".json")
#pqr.build_responsefile(dump_path, test_path, pred_path)
#print("Evaluation againts server results")
#precision_macro_query, recall_macro_query, f1_macro_query, precision_micro_query, recall_micro_query, f1_micro_query, fully_correct_query = eq.eval_query_response(test_path, dump_path)
#print("Evaluation of queries as strings")
#precision_macro_string, recall_macro_string, f1_macro_string, precision_micro_string, recall_micro_string, f1_micro_string, fully_correct_string = eq.eval_query_json(test_path, dump_path)
#res_path = dump_path.replace("pred_responses", "eval").replace(".json", ".txt")
#with open(res_path, "w") as f:
# f.write("String evaluation\n\n")
# f.write(f"Precision macro: {precision_macro_string}\n")
# f.write(f"Recall macro: {recall_macro_string}\n")
# f.write(f"F1 macro: {f1_macro_string}\n")
# f.write(f"Precision micro: {precision_micro_string}\n")
# f.write(f"Recall micro: {recall_micro_string}\n")
# f.write(f"F1 micro: {f1_micro_string}\n")
# f.write(f"Fully correct: {fully_correct_string}\n\n")
# f.write("Query evaluation\n\n")
# f.write(f"Precision macro: {precision_macro_query}\n")
# f.write(f"Recall macro: {recall_macro_query}\n")
# f.write(f"F1 macro: {f1_macro_query}\n")
# f.write(f"Precision micro: {precision_micro_query}\n")
# f.write(f"Recall micro: {recall_micro_query}\n")
# f.write(f"F1 micro: {f1_micro_query}\n")
# f.write(f"Fully correct: {fully_correct_query}\n\n")
#train_dataset = get_dataset("./data/tokenized/lc-quad-requeried-linked-train-tokenized-append-1.csv")
#test_dataset = get_dataset("test.csv")
#
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment