Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Multiple Target Tracking
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Terraform modules
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
phd-courses
Multiple Target Tracking
Commits
04990551
There was an error fetching the commit references. Please try again later.
Commit
04990551
authored
3 years ago
by
Anton Kullberg
Browse files
Options
Downloads
Patches
Plain Diff
py: vectorized likelihood matrix evaluation
parent
7448e41c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/trackers.py
+42
-19
42 additions, 19 deletions
src/trackers.py
with
42 additions
and
19 deletions
src/trackers.py
+
42
−
19
View file @
04990551
...
@@ -196,14 +196,23 @@ class GNN():
...
@@ -196,14 +196,23 @@ class GNN():
# Entry for new targets
# Entry for new targets
np
.
fill_diagonal
(
association_matrix
[:,
Nc
+
ny
:],
np
.
log
(
self
.
logic_params
[
'
Bnt
'
]))
np
.
fill_diagonal
(
association_matrix
[:,
Nc
+
ny
:],
np
.
log
(
self
.
logic_params
[
'
Bnt
'
]))
for
ti
,
track
in
enumerate
(
tracks
):
# Iterate over confirmed tracks
if
tracks
:
validation_matrix
[:,
ti
]
=
self
.
gater
.
gate
(
track
[
'
x
'
][
-
1
],
track
[
'
P
'
][
-
1
],
meas
)
# All of the tracks are assumed to use the same sensor model!
# Entry for validated tracks
x
=
np
.
vstack
([
track
[
'
x
'
][
-
1
]
for
track
in
tracks
]).
T
val_meas
=
meas
[:,
validation_matrix
[:,
ti
]]
# Get the validated measurements for this track
yhat_t
=
tracks
[
0
][
'
filt
'
].
sensor_model
[
'
h
'
](
x
)
# Returns a (ny x nx) matrix
yhat
=
track
[
'
filt
'
].
sensor_model
[
'
h
'
](
track
[
'
x
'
][
-
1
])
# Calculate the predicted measurement for this track
H_t
=
tracks
[
0
][
'
filt
'
].
sensor_model
[
'
dhdx
'
](
x
)
# Returns a (ny x nC x nx x nC) tensor
H
=
track
[
'
filt
'
].
sensor_model
[
'
dhdx
'
](
track
[
'
x
'
][
-
1
])
for
ti
,
track
in
enumerate
(
tracks
):
# Iterate over confirmed tracks
py
=
stats
.
multivariate_normal
.
pdf
(
val_meas
.
squeeze
().
T
,
mean
=
yhat
.
flatten
(),
cov
=
H
@track
[
'
P
'
][
-
1
]
@H.T
+
track
[
'
filt
'
].
sensor_model
[
'
R
'
])
validation_matrix
[:,
ti
]
=
self
.
gater
.
gate
(
track
[
'
x
'
][
-
1
],
track
[
'
P
'
][
-
1
],
meas
)
association_matrix
[
validation_matrix
[:,
ti
],
ti
]
=
np
.
log
(
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]
*
py
/
(
1
-
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]))
# PG assumed = 1
if
validation_matrix
[:,
ti
].
any
():
# If any measurements are validated
val_meas
=
meas
[:,
validation_matrix
[:,
ti
]]
# Get the validated measurements for this track
if
Nc
==
1
:
# Because of how numpy handles its matrices
yhat
=
yhat_t
H
=
H_t
.
squeeze
()
else
:
yhat
=
yhat_t
[:,
ti
]
H
=
H_t
[:,
ti
,
:,
ti
]
py
=
stats
.
multivariate_normal
.
pdf
(
val_meas
.
squeeze
().
T
,
mean
=
yhat
.
flatten
(),
cov
=
H
@track
[
'
P
'
][
-
1
]
@H.T
+
track
[
'
filt
'
].
sensor_model
[
'
R
'
])
association_matrix
[
validation_matrix
[:,
ti
],
ti
]
=
np
.
log
(
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]
*
py
/
(
1
-
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]))
# PG assumed = 1
return
association_matrix
,
validation_matrix
return
association_matrix
,
validation_matrix
def
_update_track
(
self
,
meas
,
track
):
def
_update_track
(
self
,
meas
,
track
):
...
@@ -387,16 +396,26 @@ class JPDA():
...
@@ -387,16 +396,26 @@ class JPDA():
validation_matrix
=
np
.
zeros
((
Nc
,
ny
+
1
),
dtype
=
bool
)
validation_matrix
=
np
.
zeros
((
Nc
,
ny
+
1
),
dtype
=
bool
)
validation_matrix
[:,
0
]
=
1
validation_matrix
[:,
0
]
=
1
likelihood_matrix
=
np
.
zeros
((
Nc
,
ny
+
1
))
likelihood_matrix
=
np
.
zeros
((
Nc
,
ny
+
1
))
likelihood_matrix
[:,
0
]
=
1
-
tracks
[
0
][
'
filt
'
].
sensor_model
[
'
PD
'
]
# PG assumed 1
for
ti
,
track
in
enumerate
(
tracks
):
# Iterate over confirmed tracks
if
tracks
:
validation_matrix
[
ti
,
1
:]
=
self
.
gater
.
gate
(
track
[
'
x
'
][
-
1
],
track
[
'
P
'
][
-
1
],
meas
)
# All of the tracks are assumed to use the same sensor model!
# Entry for validated tracks
x
=
np
.
vstack
([
track
[
'
x
'
][
-
1
]
for
track
in
tracks
]).
T
val_meas
=
meas
[:,
validation_matrix
[
ti
,
1
:]]
# Get the validated measurements for this track
yhat_t
=
tracks
[
0
][
'
filt
'
].
sensor_model
[
'
h
'
](
x
)
# Returns a (ny x nx) matrix
yhat
=
track
[
'
filt
'
].
sensor_model
[
'
h
'
](
track
[
'
x
'
][
-
1
])
# Calculate the predicted measurement for this track
H_t
=
tracks
[
0
][
'
filt
'
].
sensor_model
[
'
dhdx
'
](
x
)
# Returns a (ny x nC x nx x nC) tensor
H
=
track
[
'
filt
'
].
sensor_model
[
'
dhdx
'
](
track
[
'
x
'
][
-
1
])
for
ti
,
track
in
enumerate
(
tracks
):
# Iterate over confirmed tracks
py
=
stats
.
multivariate_normal
.
pdf
(
val_meas
.
squeeze
().
T
,
mean
=
yhat
.
flatten
(),
cov
=
H
@track
[
'
P
'
][
-
1
]
@H.T
+
track
[
'
filt
'
].
sensor_model
[
'
R
'
])
validation_matrix
[
ti
,
1
:]
=
self
.
gater
.
gate
(
track
[
'
x
'
][
-
1
],
track
[
'
P
'
][
-
1
],
meas
)
likelihood_matrix
[
ti
,
np
.
where
(
validation_matrix
[
ti
,
1
:])[
0
]
+
1
]
=
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]
*
py
# Entry for validated tracks
likelihood_matrix
[
ti
,
0
]
=
1
-
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]
# PG assumed 1
if
validation_matrix
[
ti
,
1
:].
any
():
# If any measurements are validated
val_meas
=
meas
[:,
validation_matrix
[
ti
,
1
:]]
# Get the validated measurements for this track
if
Nc
==
1
:
# Because of how numpy handles its matrices
yhat
=
yhat_t
H
=
H_t
.
squeeze
()
else
:
yhat
=
yhat_t
[:,
ti
]
H
=
H_t
[:,
ti
,
:,
ti
]
py
=
stats
.
multivariate_normal
.
pdf
(
val_meas
.
squeeze
().
T
,
mean
=
yhat
.
flatten
(),
cov
=
H
@track
[
'
P
'
][
-
1
]
@H.T
+
track
[
'
filt
'
].
sensor_model
[
'
R
'
])
likelihood_matrix
[
ti
,
np
.
where
(
validation_matrix
[
ti
,
1
:])[
0
]
+
1
]
=
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]
*
py
return
likelihood_matrix
,
validation_matrix
return
likelihood_matrix
,
validation_matrix
def
_update_track
(
self
,
meas
,
track
,
association_probability
):
def
_update_track
(
self
,
meas
,
track
,
association_probability
):
...
@@ -624,8 +643,12 @@ class MHT():
...
@@ -624,8 +643,12 @@ class MHT():
# Entry for validated tracks
# Entry for validated tracks
if
validation_matrix
[:,
ti
].
any
():
# If any measurements are validated
if
validation_matrix
[:,
ti
].
any
():
# If any measurements are validated
val_meas
=
meas
[:,
validation_matrix
[:,
ti
]]
# Get the validated measurements for this track
val_meas
=
meas
[:,
validation_matrix
[:,
ti
]]
# Get the validated measurements for this track
yhat
=
yhat_t
[:,
ti
]
if
Nc
==
1
:
# Because of how numpy handles its matrices
H
=
H_t
[:,
ti
,
:,
ti
]
yhat
=
yhat_t
H
=
H_t
.
squeeze
()
else
:
yhat
=
yhat_t
[:,
ti
]
H
=
H_t
[:,
ti
,
:,
ti
]
py
=
stats
.
multivariate_normal
.
pdf
(
val_meas
.
squeeze
().
T
,
mean
=
yhat
.
flatten
(),
cov
=
H
@track
[
'
P
'
][
-
1
]
@H.T
+
track
[
'
filt
'
].
sensor_model
[
'
R
'
])
py
=
stats
.
multivariate_normal
.
pdf
(
val_meas
.
squeeze
().
T
,
mean
=
yhat
.
flatten
(),
cov
=
H
@track
[
'
P
'
][
-
1
]
@H.T
+
track
[
'
filt
'
].
sensor_model
[
'
R
'
])
association_matrix
[
validation_matrix
[:,
ti
],
ti
]
=
np
.
log
(
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]
*
py
/
(
1
-
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]))
# PG assumed = 1
association_matrix
[
validation_matrix
[:,
ti
],
ti
]
=
np
.
log
(
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]
*
py
/
(
1
-
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]))
# PG assumed = 1
likelihood_matrix
[
validation_matrix
[:,
ti
],
ti
]
=
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]
*
py
likelihood_matrix
[
validation_matrix
[:,
ti
],
ti
]
=
track
[
'
filt
'
].
sensor_model
[
'
PD
'
]
*
py
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment