Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
diffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy - loadLevel9_Overall$OverallEnergy
diffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy - loadLevel10_Overall$OverallEnergy
diffLoadLevel_Overall = list(diffLoadLevel0_Overall,diffLoadLevel1_Overall,diffLoadLevel2_Overall,
diffLoadLevel3_Overall,diffLoadLevel4_Overall,diffLoadLevel5_Overall,
diffLoadLevel6_Overall,diffLoadLevel7_Overall,diffLoadLevel8_Overall,
diffLoadLevel9_Overall,diffLoadLevel10_Overall)
#Calculate the relative difference - for Overall Energy
reldiffLoadLevel0_Overall <- loadLevel0_Marginal$OverallEnergy / loadLevel0_Overall$OverallEnergy
reldiffLoadLevel1_Overall <- loadLevel1_Marginal$OverallEnergy / loadLevel1_Overall$OverallEnergy
reldiffLoadLevel2_Overall <- loadLevel2_Marginal$OverallEnergy / loadLevel2_Overall$OverallEnergy
reldiffLoadLevel3_Overall <- loadLevel3_Marginal$OverallEnergy / loadLevel3_Overall$OverallEnergy
reldiffLoadLevel4_Overall <- loadLevel4_Marginal$OverallEnergy / loadLevel4_Overall$OverallEnergy
reldiffLoadLevel5_Overall <- loadLevel5_Marginal$OverallEnergy / loadLevel5_Overall$OverallEnergy
reldiffLoadLevel6_Overall <- loadLevel6_Marginal$OverallEnergy / loadLevel6_Overall$OverallEnergy
reldiffLoadLevel7_Overall <- loadLevel7_Marginal$OverallEnergy / loadLevel7_Overall$OverallEnergy
reldiffLoadLevel8_Overall <- loadLevel8_Marginal$OverallEnergy / loadLevel8_Overall$OverallEnergy
reldiffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy / loadLevel9_Overall$OverallEnergy
reldiffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy / loadLevel10_Overall$OverallEnergy
reldiffLoadLevel_Overall = list(reldiffLoadLevel0_Overall,reldiffLoadLevel1_Overall,reldiffLoadLevel2_Overall,
reldiffLoadLevel3_Overall,reldiffLoadLevel4_Overall,reldiffLoadLevel5_Overall,
reldiffLoadLevel6_Overall,reldiffLoadLevel7_Overall,reldiffLoadLevel8_Overall,
reldiffLoadLevel9_Overall,reldiffLoadLevel10_Overall)
#Calculate the relative difference - for Marginal Energy
reldiffLoadLevel0_Marginal <- loadLevel0_Overall$MarginalEnergy / loadLevel0_Marginal$MarginalEnergy
reldiffLoadLevel1_Marginal <- loadLevel1_Overall$MarginalEnergy / loadLevel1_Marginal$MarginalEnergy
reldiffLoadLevel2_Marginal <- loadLevel2_Overall$MarginalEnergy / loadLevel2_Marginal$MarginalEnergy
reldiffLoadLevel3_Marginal <- loadLevel3_Overall$MarginalEnergy / loadLevel3_Marginal$MarginalEnergy
reldiffLoadLevel4_Marginal <- loadLevel4_Overall$MarginalEnergy / loadLevel4_Marginal$MarginalEnergy
reldiffLoadLevel5_Marginal <- loadLevel5_Overall$MarginalEnergy / loadLevel5_Marginal$MarginalEnergy
reldiffLoadLevel6_Marginal <- loadLevel6_Overall$MarginalEnergy / loadLevel6_Marginal$MarginalEnergy
reldiffLoadLevel7_Marginal <- loadLevel7_Overall$MarginalEnergy / loadLevel7_Marginal$MarginalEnergy
reldiffLoadLevel8_Marginal <- loadLevel8_Overall$MarginalEnergy / loadLevel8_Marginal$MarginalEnergy
reldiffLoadLevel9_Marginal <- loadLevel9_Overall$MarginalEnergy / loadLevel9_Marginal$MarginalEnergy
reldiffLoadLevel10_Marginal <- loadLevel10_Overall$MarginalEnergy / loadLevel10_Marginal$MarginalEnergy
reldiffLoadLevel_Marginal = list(reldiffLoadLevel0_Marginal,reldiffLoadLevel1_Marginal,reldiffLoadLevel2_Marginal,
reldiffLoadLevel3_Marginal,reldiffLoadLevel4_Marginal,reldiffLoadLevel5_Marginal,
reldiffLoadLevel6_Marginal,reldiffLoadLevel7_Marginal,reldiffLoadLevel8_Marginal,
reldiffLoadLevel9_Marginal,reldiffLoadLevel10_Marginal)
#Calculating how many are same, different and infeasible, also storing the data about the difference
same=rep(0,11)
different=rep(0,11)
infeasible=rep(0,11)
datadiff=vector()
datareldiff=vector()
datareldiff_m=vector()
datadiffloc=vector()
for (levelNb in seq(1,11)){
difference=vector()
reldifference=vector()
reldifference_m=vector()
for(diff in diffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){infeasible[levelNb]=infeasible[levelNb]+1}
else if (diff==0){same[levelNb]=same[levelNb]+1}
else if (diff>0){different[levelNb]=different[levelNb]+1
difference=append(difference,diff)}
}
for(diff in reldiffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference=append(reldifference,diff)}
}
datadiffloc=append(datadiffloc,rep((levelNb-1)*10,length(difference)))
datadiff=append(datadiff,difference)
datareldiff=append(datareldiff,reldifference)
for(diff in reldiffLoadLevel_Marginal[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference_m=append(reldifference_m,diff)}
}
datareldiff_m=append(datareldiff_m,reldifference_m)
}
##Create the dataframe for plotting the difference
LoadLevel= rep(seq(0,100,10),3)
Outcome=c(rep("Same",11),rep("Different",11),rep("Infeasible",11))
NbPlacements=c(same,different,infeasible)
nbDifferentPlacements =data.frame(LoadLevel,Outcome,NbPlacements)
### Plot - Nb of different placement
ggplot(data=nbDifferentPlacements, aes(x=LoadLevel, y=NbPlacements, fill=Outcome)) +
geom_bar(stat="identity", position = position_stack())+
theme_minimal()+
ylab("# obtained placements")+
xlab("Average load level in %")+
labs(fill = "Overall and Marginal placements are")+
scale_fill_manual(values=c("#A95AA1","#F5793A","#85C0F9"))+
theme(legend.position = "top",axis.title.x = element_text(size = 24),
axis.text.x = element_text(size = 24),
axis.title.y = element_text(size = 24),
axis.text.y = element_text(size = 24),
legend.text=element_text(size = 24),
legend.title=element_text(size = 24))
##Create the dataframe for statistics about the difference - OVERALL ENERGY
statisticsPlacement=data.frame(datadiffloc,datadiff,datareldiff)
#Get numbers for the text
quantile(statisticsPlacement$datareldiff,0.10)
quantile(statisticsPlacement$datareldiff,0.90)
###Plot - Statistics about the relative difference, violin plot
ggplot(data=statisticsPlacement, aes(x=factor(datadiffloc), y=datareldiff)) +
geom_violin()+
theme_minimal()+
ylab("Relative difference in overall energy (J)")+
xlab("Average load level in %")+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
##Create the dataframe for statistics about the difference - MARGINAL ENERGY
statisticsPlacement_m=data.frame(datadiffloc,datareldiff_m)
#Get numbers for the text
quantile(statisticsPlacement_m$datareldiff,0.10)
quantile(statisticsPlacement_m$datareldiff,0.90)
###Plot - Statistics about the relative difference, violin plot
ggplot(data=statisticsPlacement_m, aes(x=factor(datadiffloc), y=datareldiff_m)) +
geom_violin()+
theme_minimal()+
ylab("Relative difference in marginal energy (J)")+
xlab("Average load level in %")+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
####End
#Average included device utilization data graph
####Begin
### Getting the data - different placements ONLY
result_data_csv <- read.csv(file="./6FunctionInstances/resultsParsed_UtilizationDifferent_40rep_DeviceOnlyVar_6replicas_Std10_RequestDevice4.csv", header=TRUE, sep=",")
#Adding the load level column
result_data_csv$LoadLevel <- result_data_csv$Scenario*10
#Create a dataframe with only the device utilization information
utilization=data.frame(result_data_csv$Device0,result_data_csv$Device1,result_data_csv$Device2,result_data_csv$Device3,
result_data_csv$Device4,result_data_csv$Device5,result_data_csv$Device6,result_data_csv$Device7,
result_data_csv$Device8,result_data_csv$Device9,result_data_csv$Device10)
#Calculating the mean utilization for each data line
meanUt=rowMeans(utilization,na.rm=TRUE)
#Create data frame for plotting
mean_data_utilization= data.frame(result_data_csv$LoadLevel,result_data_csv$Alternative,meanUt)
###Plot - Statistics about the utilization, violin plot
ggplot(data=mean_data_utilization, aes(x=factor(result_data_csv$LoadLevel), y=meanUt, fill=result_data_csv$Alternative)) +
geom_violin()+
theme_minimal()+
ylab("Mean device utilization when placements are different (%)")+
xlab("Average load level in %")+
labs(fill = "Optimization objective")+
scale_fill_manual(values=c("#F0E442","#0072B2"))+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
####End
#Completion Time graph for different placements
####Begin
## Getting the data - different placements ONLY
result_data_csv_ut_DifferentOnly <- read.csv(file="./6FunctionInstances/resultsParsed_UtilizationDifferent_40rep_DeviceOnlyVar_6replicas_Std10_RequestDevice4.csv", header=TRUE, sep=",")
## Getting the data - all placements
result_data_csv_ev_All <- read.csv(file="./6FunctionInstances/resultsParsed_40rep_DeviceOnlyVar_6replicas_Std10_RequestDevice4.csv", header=TRUE, sep=",")
result_data_csv_ev_All$LoadLevel <- result_data_csv_ev_All$Scenario*10
##Adding a column for the combination Repetition_Scenario to be able to filter
result_data_csv_ut_DifferentOnly$id <- paste(result_data_csv_ut_DifferentOnly$Repetition,result_data_csv_ut_DifferentOnly$Scenario,sep = "_")
result_data_csv_ev_All$id <- paste(result_data_csv_ev_All$Repetition,result_data_csv_ev_All$Scenario,sep = "_")
##Filter the all data from the combination Repetition/Scenario/Alternative? to get only the info when placements are different
library(dplyr)
result_data_csv_ev_DifferentOnly = result_data_csv_ev_All %>% filter(id %in% result_data_csv_ut_DifferentOnly$id)
#Boxplot
ggplot(data=result_data_csv_ev_DifferentOnly, aes(x=factor(LoadLevel), y=CompletionTime,
fill=Alternative)) +
geom_boxplot()+
theme_minimal()+
ylab("Request completion time when placements are different (ms)")+
xlab("Average load level in %")+
labs(fill = "Optimization objective")+
ylim(0,100)+
scale_fill_manual(values=c("#F0E442","#0072B2"))+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
####End
## FULL CO-LOCATION STUDY
## NORMALLY DISTRIBUTED LOAD - STD 10 (6 function instances/replicas)
####Begin
### Getting the data
result_data_csv <- read.csv(file="./FullColocation/resultsParsed_40rep_DeviceOnlyVar_6replicas_Std10_RequestDevice0.csv", header=TRUE, sep=",")
#Adding the load level column
result_data_csv$LoadLevel <- result_data_csv$Scenario*10
###Filter per loadLevel
loadLevel0_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Overall"),]
loadLevel0_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Marginal"),]
loadLevel1_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Overall"),]
loadLevel1_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Marginal"),]
loadLevel2_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Overall"),]
loadLevel2_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Marginal"),]
loadLevel3_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Overall"),]
loadLevel3_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Marginal"),]
loadLevel4_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Overall"),]
loadLevel4_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Marginal"),]
loadLevel5_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Overall"),]
loadLevel5_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Marginal"),]
loadLevel6_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Overall"),]
loadLevel6_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Marginal"),]
loadLevel7_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Overall"),]
loadLevel7_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Marginal"),]
loadLevel8_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Overall"),]
loadLevel8_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Marginal"),]
loadLevel9_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Overall"),]
loadLevel9_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Marginal"),]
loadLevel10_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Overall"),]
loadLevel10_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Marginal"),]
#Calculating how many are same, different and infeasible, also storing the data about the difference
same=rep(0,11)
different=rep(0,11)
infeasible=rep(0,11)
datadiff=vector()
datareldiff=vector()
datareldiff_m=vector()
datadiffloc=vector()
for (levelNb in seq(1,11)){
difference=vector()
reldifference=vector()
reldifference_m=vector()
for(diff in diffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){infeasible[levelNb]=infeasible[levelNb]+1}
else if (diff==0){same[levelNb]=same[levelNb]+1}
else if (diff>0){different[levelNb]=different[levelNb]+1
difference=append(difference,diff)}
}
for(diff in reldiffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference=append(reldifference,diff)}
}
datadiffloc=append(datadiffloc,rep((levelNb-1)*10,length(difference)))
datadiff=append(datadiff,difference)
datareldiff=append(datareldiff,reldifference)
for(diff in reldiffLoadLevel_Marginal[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference_m=append(reldifference_m,diff)}
}
datareldiff_m=append(datareldiff_m,reldifference_m)
}
##Create the dataframe for plotting the difference
LoadLevel= rep(seq(0,100,10),3)
Outcome=c(rep("Same",11),rep("Different",11),rep("Infeasible",11))
NbPlacements=c(same,different,infeasible)
nbDifferentPlacements =data.frame(LoadLevel,Outcome,NbPlacements)
### Plot - Nb of different placement
ggplot(data=nbDifferentPlacements, aes(x=LoadLevel, y=NbPlacements, fill=Outcome)) +
geom_bar(stat="identity", position = position_stack())+
theme_minimal()+
ylab("# obtained placements")+
xlab("Average load level in %")+
labs(fill = "Overall and Marginal placements are")+
scale_fill_manual(values=c("#A95AA1","#F5793A","#85C0F9"))+
theme(legend.position = "top",axis.title.x = element_text(size = 20),
axis.text.x = element_text(size = 20),
axis.title.y = element_text(size = 20),
axis.text.y = element_text(size = 20),
legend.text=element_text(size = 20),
legend.title=element_text(size = 20))
####End
## RANDOM BEGINNING DEVICE STUDIES
### FIXED LOAD - RANDOM BEGINNING DEVICE
####Begin
### Getting the data
result_data_csv <- read.csv(file="./RandomBeginningDevice/Fixed/resultsParsed_40rep_DeviceOnlyVar_2replicas_Uniform_RequestDeviceRandom.csv", header=TRUE, sep=",")
#Adding the load level column
result_data_csv$LoadLevel <- result_data_csv$Scenario*10
###Filter per loadLevel
loadLevel0_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Overall"),]
loadLevel0_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Marginal"),]
loadLevel1_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Overall"),]
loadLevel1_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Marginal"),]
loadLevel2_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Overall"),]
loadLevel2_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Marginal"),]
loadLevel3_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Overall"),]
loadLevel3_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Marginal"),]
loadLevel4_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Overall"),]
loadLevel4_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Marginal"),]
loadLevel5_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Overall"),]
loadLevel5_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Marginal"),]
loadLevel6_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Overall"),]
loadLevel6_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Marginal"),]
loadLevel7_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Overall"),]
loadLevel7_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Marginal"),]
loadLevel8_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Overall"),]
loadLevel8_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Marginal"),]
loadLevel9_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Overall"),]
loadLevel9_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Marginal"),]
loadLevel10_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Overall"),]
loadLevel10_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Marginal"),]
##Working on visualizing the difference
#Calculate the difference - for Overall Energy
diffLoadLevel0_Overall <- loadLevel0_Marginal$OverallEnergy - loadLevel0_Overall$OverallEnergy
diffLoadLevel1_Overall <- loadLevel1_Marginal$OverallEnergy - loadLevel1_Overall$OverallEnergy
diffLoadLevel2_Overall <- loadLevel2_Marginal$OverallEnergy - loadLevel2_Overall$OverallEnergy
diffLoadLevel3_Overall <- loadLevel3_Marginal$OverallEnergy - loadLevel3_Overall$OverallEnergy
diffLoadLevel4_Overall <- loadLevel4_Marginal$OverallEnergy - loadLevel4_Overall$OverallEnergy
diffLoadLevel5_Overall <- loadLevel5_Marginal$OverallEnergy - loadLevel5_Overall$OverallEnergy
diffLoadLevel6_Overall <- loadLevel6_Marginal$OverallEnergy - loadLevel6_Overall$OverallEnergy
diffLoadLevel7_Overall <- loadLevel7_Marginal$OverallEnergy - loadLevel7_Overall$OverallEnergy
diffLoadLevel8_Overall <- loadLevel8_Marginal$OverallEnergy - loadLevel8_Overall$OverallEnergy
diffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy - loadLevel9_Overall$OverallEnergy
diffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy - loadLevel10_Overall$OverallEnergy
diffLoadLevel_Overall = list(diffLoadLevel0_Overall,diffLoadLevel1_Overall,diffLoadLevel2_Overall,
diffLoadLevel3_Overall,diffLoadLevel4_Overall,diffLoadLevel5_Overall,
diffLoadLevel6_Overall,diffLoadLevel7_Overall,diffLoadLevel8_Overall,
diffLoadLevel9_Overall,diffLoadLevel10_Overall)
#Calculating how many are same, different and infeasible
same=rep(0,11)
different=rep(0,11)
infeasible=rep(0,11)
for (levelNb in seq(1,11)){
print(levelNb)
print(diffLoadLevel_Overall[levelNb])
for(diff in diffLoadLevel_Overall[[levelNb]]){
print(diff)
if (is.na(diff)){infeasible[levelNb]=infeasible[levelNb]+1}
else if (diff==0){same[levelNb]=same[levelNb]+1}
else if (diff>0){different[levelNb]=different[levelNb]+1}
}
}
##Create the dataframe for plotting the difference
LoadLevel= rep(seq(0,100,10),3)
Outcome=c(rep("Same",11),rep("Different",11),rep("Infeasible",11))
NbPlacements=c(same,different,infeasible)
nbDifferentPlacements =data.frame(LoadLevel,Outcome,NbPlacements)
### Plot - Nb of different placement
ggplot(data=nbDifferentPlacements, aes(x=LoadLevel, y=NbPlacements, fill=Outcome)) +
geom_bar(stat="identity", position = position_stack())+
theme_minimal()+
ylab("# obtained placements")+
xlab("Average load level in %")+
labs(fill = "Overall and Marginal placements are")+
scale_fill_manual(values=c("#A95AA1","#F5793A","#85C0F9"))+
theme(legend.position = "top",axis.title.x = element_text(size = 24),
axis.text.x = element_text(size = 24),
axis.title.y = element_text(size = 24),
axis.text.y = element_text(size = 24),
legend.text=element_text(size = 24),
legend.title=element_text(size = 24))
####End
### NORMALLY DISTRIBUTED LOAD (2 function instances/replicas) Std 10 - RANDOM BEGINNING DEVICE
#Graphs for the categorization of placements and the relative difference in overall/marginal energy
####Begin
### Getting the data
result_data_csv <- read.csv(file="./RandomBeginningDevice/Std10/resultsParsed_40rep_DeviceOnlyVar_2replicas_Std10_RequestDeviceRandom.csv", header=TRUE, sep=",")
#Adding the load level column
result_data_csv$LoadLevel <- result_data_csv$Scenario*10
###Filter per loadLevel
loadLevel0_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Overall"),]
loadLevel0_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Marginal"),]
loadLevel1_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Overall"),]
loadLevel1_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Marginal"),]
loadLevel2_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Overall"),]
loadLevel2_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Marginal"),]
loadLevel3_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Overall"),]
loadLevel3_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Marginal"),]
loadLevel4_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Overall"),]
loadLevel4_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Marginal"),]
loadLevel5_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Overall"),]
loadLevel5_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Marginal"),]
loadLevel6_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Overall"),]
loadLevel6_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Marginal"),]
loadLevel7_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Overall"),]
loadLevel7_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Marginal"),]
loadLevel8_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Overall"),]
loadLevel8_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Marginal"),]
loadLevel9_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Overall"),]
loadLevel9_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Marginal"),]
loadLevel10_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Overall"),]
loadLevel10_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Marginal"),]
##Working on visualizing the difference
#Calculate the difference - for Overall Energy
diffLoadLevel0_Overall <- loadLevel0_Marginal$OverallEnergy - loadLevel0_Overall$OverallEnergy
diffLoadLevel1_Overall <- loadLevel1_Marginal$OverallEnergy - loadLevel1_Overall$OverallEnergy
diffLoadLevel2_Overall <- loadLevel2_Marginal$OverallEnergy - loadLevel2_Overall$OverallEnergy
diffLoadLevel3_Overall <- loadLevel3_Marginal$OverallEnergy - loadLevel3_Overall$OverallEnergy
diffLoadLevel4_Overall <- loadLevel4_Marginal$OverallEnergy - loadLevel4_Overall$OverallEnergy
diffLoadLevel5_Overall <- loadLevel5_Marginal$OverallEnergy - loadLevel5_Overall$OverallEnergy
diffLoadLevel6_Overall <- loadLevel6_Marginal$OverallEnergy - loadLevel6_Overall$OverallEnergy
diffLoadLevel7_Overall <- loadLevel7_Marginal$OverallEnergy - loadLevel7_Overall$OverallEnergy
diffLoadLevel8_Overall <- loadLevel8_Marginal$OverallEnergy - loadLevel8_Overall$OverallEnergy
diffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy - loadLevel9_Overall$OverallEnergy
diffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy - loadLevel10_Overall$OverallEnergy
diffLoadLevel_Overall = list(diffLoadLevel0_Overall,diffLoadLevel1_Overall,diffLoadLevel2_Overall,
diffLoadLevel3_Overall,diffLoadLevel4_Overall,diffLoadLevel5_Overall,
diffLoadLevel6_Overall,diffLoadLevel7_Overall,diffLoadLevel8_Overall,
diffLoadLevel9_Overall,diffLoadLevel10_Overall)
#Calculate the relative difference - for Overall Energy
reldiffLoadLevel0_Overall <- loadLevel0_Marginal$OverallEnergy / loadLevel0_Overall$OverallEnergy
reldiffLoadLevel1_Overall <- loadLevel1_Marginal$OverallEnergy / loadLevel1_Overall$OverallEnergy
reldiffLoadLevel2_Overall <- loadLevel2_Marginal$OverallEnergy / loadLevel2_Overall$OverallEnergy
reldiffLoadLevel3_Overall <- loadLevel3_Marginal$OverallEnergy / loadLevel3_Overall$OverallEnergy
reldiffLoadLevel4_Overall <- loadLevel4_Marginal$OverallEnergy / loadLevel4_Overall$OverallEnergy
reldiffLoadLevel5_Overall <- loadLevel5_Marginal$OverallEnergy / loadLevel5_Overall$OverallEnergy
reldiffLoadLevel6_Overall <- loadLevel6_Marginal$OverallEnergy / loadLevel6_Overall$OverallEnergy
reldiffLoadLevel7_Overall <- loadLevel7_Marginal$OverallEnergy / loadLevel7_Overall$OverallEnergy
reldiffLoadLevel8_Overall <- loadLevel8_Marginal$OverallEnergy / loadLevel8_Overall$OverallEnergy
reldiffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy / loadLevel9_Overall$OverallEnergy
reldiffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy / loadLevel10_Overall$OverallEnergy
reldiffLoadLevel_Overall = list(reldiffLoadLevel0_Overall,reldiffLoadLevel1_Overall,reldiffLoadLevel2_Overall,
reldiffLoadLevel3_Overall,reldiffLoadLevel4_Overall,reldiffLoadLevel5_Overall,
reldiffLoadLevel6_Overall,reldiffLoadLevel7_Overall,reldiffLoadLevel8_Overall,
reldiffLoadLevel9_Overall,reldiffLoadLevel10_Overall)
#Calculate the relative difference - for Marginal Energy
reldiffLoadLevel0_Marginal <- loadLevel0_Overall$MarginalEnergy / loadLevel0_Marginal$MarginalEnergy
reldiffLoadLevel1_Marginal <- loadLevel1_Overall$MarginalEnergy / loadLevel1_Marginal$MarginalEnergy
reldiffLoadLevel2_Marginal <- loadLevel2_Overall$MarginalEnergy / loadLevel2_Marginal$MarginalEnergy
reldiffLoadLevel3_Marginal <- loadLevel3_Overall$MarginalEnergy / loadLevel3_Marginal$MarginalEnergy
reldiffLoadLevel4_Marginal <- loadLevel4_Overall$MarginalEnergy / loadLevel4_Marginal$MarginalEnergy
reldiffLoadLevel5_Marginal <- loadLevel5_Overall$MarginalEnergy / loadLevel5_Marginal$MarginalEnergy
reldiffLoadLevel6_Marginal <- loadLevel6_Overall$MarginalEnergy / loadLevel6_Marginal$MarginalEnergy
reldiffLoadLevel7_Marginal <- loadLevel7_Overall$MarginalEnergy / loadLevel7_Marginal$MarginalEnergy
reldiffLoadLevel8_Marginal <- loadLevel8_Overall$MarginalEnergy / loadLevel8_Marginal$MarginalEnergy
reldiffLoadLevel9_Marginal <- loadLevel9_Overall$MarginalEnergy / loadLevel9_Marginal$MarginalEnergy
reldiffLoadLevel10_Marginal <- loadLevel10_Overall$MarginalEnergy / loadLevel10_Marginal$MarginalEnergy
reldiffLoadLevel_Marginal = list(reldiffLoadLevel0_Marginal,reldiffLoadLevel1_Marginal,reldiffLoadLevel2_Marginal,
reldiffLoadLevel3_Marginal,reldiffLoadLevel4_Marginal,reldiffLoadLevel5_Marginal,
reldiffLoadLevel6_Marginal,reldiffLoadLevel7_Marginal,reldiffLoadLevel8_Marginal,
reldiffLoadLevel9_Marginal,reldiffLoadLevel10_Marginal)
#Calculating how many are same, different and infeasible, also storing the data about the difference
same=rep(0,11)
different=rep(0,11)
infeasible=rep(0,11)
datadiff=vector()
datareldiff=vector()
datareldiff_m=vector()
datadiffloc=vector()
for (levelNb in seq(1,11)){
difference=vector()
reldifference=vector()
reldifference_m=vector()
for(diff in diffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){infeasible[levelNb]=infeasible[levelNb]+1}
else if (diff==0){same[levelNb]=same[levelNb]+1}
else if (diff>0){different[levelNb]=different[levelNb]+1
difference=append(difference,diff)}
}
for(diff in reldiffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference=append(reldifference,diff)}
}
datadiffloc=append(datadiffloc,rep((levelNb-1)*10,length(difference)))
datadiff=append(datadiff,difference)
datareldiff=append(datareldiff,reldifference)
for(diff in reldiffLoadLevel_Marginal[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference_m=append(reldifference_m,diff)}
}
datareldiff_m=append(datareldiff_m,reldifference_m)
}
##Create the dataframe for plotting the difference
LoadLevel= rep(seq(0,100,10),3)
Outcome=c(rep("Same",11),rep("Different",11),rep("Infeasible",11))
NbPlacements=c(same,different,infeasible)
nbDifferentPlacements =data.frame(LoadLevel,Outcome,NbPlacements)
### Plot - Nb of different placement
ggplot(data=nbDifferentPlacements, aes(x=LoadLevel, y=NbPlacements, fill=Outcome)) +
geom_bar(stat="identity", position = position_stack())+
theme_minimal()+
ylab("# obtained placements")+
xlab("Average load level in %")+
labs(fill = "Overall and Marginal placements are")+
scale_fill_manual(values=c("#A95AA1","#F5793A","#85C0F9"))+
theme(legend.position = "top",axis.title.x = element_text(size = 24),
axis.text.x = element_text(size = 24),
axis.title.y = element_text(size = 24),
axis.text.y = element_text(size = 24),
legend.text=element_text(size = 24),
legend.title=element_text(size = 24))
##Create the dataframe for statistics about the difference - OVERALL ENERGY
statisticsPlacement=data.frame(datadiffloc,datadiff,datareldiff)
#Get numbers for the text
quantile(statisticsPlacement$datareldiff,0.10)
quantile(statisticsPlacement$datareldiff,0.90)
###Plot - Statistics about the relative difference, violin plot
ggplot(data=statisticsPlacement, aes(x=factor(datadiffloc), y=datareldiff)) +
geom_violin()+
theme_minimal()+
ylab("Relative difference in overall energy (J)")+
xlab("Average load level in %")+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
##Create the dataframe for statistics about the difference - MARGINAL ENERGY
statisticsPlacement_m=data.frame(datadiffloc,datareldiff_m)
#Get numbers for the text
quantile(statisticsPlacement_m$datareldiff,0.10)
quantile(statisticsPlacement_m$datareldiff,0.90)
###Plot - Statistics about the relative difference, violin plot
ggplot(data=statisticsPlacement_m, aes(x=factor(datadiffloc), y=datareldiff_m)) +
geom_violin()+
theme_minimal()+
ylab("Relative difference in marginal energy (J)")+
xlab("Average load level in %")+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
####End
#Average included device utilization data graph
####Begin
### Getting the data - different placements ONLY
result_data_csv <- read.csv(file="./RandomBeginningDevice/Std10/resultsParsed_UtilizationDifferent_40rep_DeviceOnlyVar_2replicas_Std10_RequestDeviceRandom.csv", header=TRUE, sep=",")