Skip to content
Snippets Groups Projects
.Rhistory 31.8 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
diffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy - loadLevel9_Overall$OverallEnergy
diffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy - loadLevel10_Overall$OverallEnergy
diffLoadLevel_Overall = list(diffLoadLevel0_Overall,diffLoadLevel1_Overall,diffLoadLevel2_Overall,
diffLoadLevel3_Overall,diffLoadLevel4_Overall,diffLoadLevel5_Overall,
diffLoadLevel6_Overall,diffLoadLevel7_Overall,diffLoadLevel8_Overall,
diffLoadLevel9_Overall,diffLoadLevel10_Overall)
#Calculate the relative difference - for Overall Energy
reldiffLoadLevel0_Overall <- loadLevel0_Marginal$OverallEnergy / loadLevel0_Overall$OverallEnergy
reldiffLoadLevel1_Overall <- loadLevel1_Marginal$OverallEnergy / loadLevel1_Overall$OverallEnergy
reldiffLoadLevel2_Overall <- loadLevel2_Marginal$OverallEnergy / loadLevel2_Overall$OverallEnergy
reldiffLoadLevel3_Overall <- loadLevel3_Marginal$OverallEnergy / loadLevel3_Overall$OverallEnergy
reldiffLoadLevel4_Overall <- loadLevel4_Marginal$OverallEnergy / loadLevel4_Overall$OverallEnergy
reldiffLoadLevel5_Overall <- loadLevel5_Marginal$OverallEnergy / loadLevel5_Overall$OverallEnergy
reldiffLoadLevel6_Overall <- loadLevel6_Marginal$OverallEnergy / loadLevel6_Overall$OverallEnergy
reldiffLoadLevel7_Overall <- loadLevel7_Marginal$OverallEnergy / loadLevel7_Overall$OverallEnergy
reldiffLoadLevel8_Overall <- loadLevel8_Marginal$OverallEnergy / loadLevel8_Overall$OverallEnergy
reldiffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy / loadLevel9_Overall$OverallEnergy
reldiffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy / loadLevel10_Overall$OverallEnergy
reldiffLoadLevel_Overall = list(reldiffLoadLevel0_Overall,reldiffLoadLevel1_Overall,reldiffLoadLevel2_Overall,
reldiffLoadLevel3_Overall,reldiffLoadLevel4_Overall,reldiffLoadLevel5_Overall,
reldiffLoadLevel6_Overall,reldiffLoadLevel7_Overall,reldiffLoadLevel8_Overall,
reldiffLoadLevel9_Overall,reldiffLoadLevel10_Overall)
#Calculate the relative difference - for Marginal Energy
reldiffLoadLevel0_Marginal <- loadLevel0_Overall$MarginalEnergy / loadLevel0_Marginal$MarginalEnergy
reldiffLoadLevel1_Marginal <- loadLevel1_Overall$MarginalEnergy / loadLevel1_Marginal$MarginalEnergy
reldiffLoadLevel2_Marginal <- loadLevel2_Overall$MarginalEnergy / loadLevel2_Marginal$MarginalEnergy
reldiffLoadLevel3_Marginal <- loadLevel3_Overall$MarginalEnergy / loadLevel3_Marginal$MarginalEnergy
reldiffLoadLevel4_Marginal <- loadLevel4_Overall$MarginalEnergy / loadLevel4_Marginal$MarginalEnergy
reldiffLoadLevel5_Marginal <- loadLevel5_Overall$MarginalEnergy / loadLevel5_Marginal$MarginalEnergy
reldiffLoadLevel6_Marginal <- loadLevel6_Overall$MarginalEnergy / loadLevel6_Marginal$MarginalEnergy
reldiffLoadLevel7_Marginal <- loadLevel7_Overall$MarginalEnergy / loadLevel7_Marginal$MarginalEnergy
reldiffLoadLevel8_Marginal <- loadLevel8_Overall$MarginalEnergy / loadLevel8_Marginal$MarginalEnergy
reldiffLoadLevel9_Marginal <- loadLevel9_Overall$MarginalEnergy / loadLevel9_Marginal$MarginalEnergy
reldiffLoadLevel10_Marginal <- loadLevel10_Overall$MarginalEnergy / loadLevel10_Marginal$MarginalEnergy
reldiffLoadLevel_Marginal = list(reldiffLoadLevel0_Marginal,reldiffLoadLevel1_Marginal,reldiffLoadLevel2_Marginal,
reldiffLoadLevel3_Marginal,reldiffLoadLevel4_Marginal,reldiffLoadLevel5_Marginal,
reldiffLoadLevel6_Marginal,reldiffLoadLevel7_Marginal,reldiffLoadLevel8_Marginal,
reldiffLoadLevel9_Marginal,reldiffLoadLevel10_Marginal)
#Calculating how many are same, different and infeasible, also storing the data about the difference
same=rep(0,11)
different=rep(0,11)
infeasible=rep(0,11)
datadiff=vector()
datareldiff=vector()
datareldiff_m=vector()
datadiffloc=vector()
for (levelNb in seq(1,11)){
difference=vector()
reldifference=vector()
reldifference_m=vector()
for(diff in diffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){infeasible[levelNb]=infeasible[levelNb]+1}
else if (diff==0){same[levelNb]=same[levelNb]+1}
else if (diff>0){different[levelNb]=different[levelNb]+1
difference=append(difference,diff)}
}
for(diff in reldiffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference=append(reldifference,diff)}
}
datadiffloc=append(datadiffloc,rep((levelNb-1)*10,length(difference)))
datadiff=append(datadiff,difference)
datareldiff=append(datareldiff,reldifference)
for(diff in reldiffLoadLevel_Marginal[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference_m=append(reldifference_m,diff)}
}
datareldiff_m=append(datareldiff_m,reldifference_m)
}
##Create the dataframe for plotting the difference
LoadLevel= rep(seq(0,100,10),3)
Outcome=c(rep("Same",11),rep("Different",11),rep("Infeasible",11))
NbPlacements=c(same,different,infeasible)
nbDifferentPlacements =data.frame(LoadLevel,Outcome,NbPlacements)
### Plot - Nb of different placement
ggplot(data=nbDifferentPlacements, aes(x=LoadLevel, y=NbPlacements, fill=Outcome)) +
geom_bar(stat="identity", position = position_stack())+
theme_minimal()+
ylab("# obtained placements")+
xlab("Average load level in %")+
labs(fill = "Overall and Marginal placements are")+
scale_fill_manual(values=c("#A95AA1","#F5793A","#85C0F9"))+
theme(legend.position = "top",axis.title.x = element_text(size = 24),
axis.text.x = element_text(size = 24),
axis.title.y = element_text(size = 24),
axis.text.y = element_text(size = 24),
legend.text=element_text(size = 24),
legend.title=element_text(size = 24))
##Create the dataframe for statistics about the difference - OVERALL ENERGY
statisticsPlacement=data.frame(datadiffloc,datadiff,datareldiff)
#Get numbers for the text
quantile(statisticsPlacement$datareldiff,0.10)
quantile(statisticsPlacement$datareldiff,0.90)
###Plot - Statistics about the relative difference, violin plot
ggplot(data=statisticsPlacement, aes(x=factor(datadiffloc), y=datareldiff)) +
geom_violin()+
theme_minimal()+
ylab("Relative difference in overall energy (J)")+
xlab("Average load level in %")+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
##Create the dataframe for statistics about the difference - MARGINAL ENERGY
statisticsPlacement_m=data.frame(datadiffloc,datareldiff_m)
#Get numbers for the text
quantile(statisticsPlacement_m$datareldiff,0.10)
quantile(statisticsPlacement_m$datareldiff,0.90)
###Plot - Statistics about the relative difference, violin plot
ggplot(data=statisticsPlacement_m, aes(x=factor(datadiffloc), y=datareldiff_m)) +
geom_violin()+
theme_minimal()+
ylab("Relative difference in marginal energy (J)")+
xlab("Average load level in %")+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
####End
#Average included device utilization data graph
####Begin
### Getting the data - different placements ONLY
result_data_csv <- read.csv(file="./6FunctionInstances/resultsParsed_UtilizationDifferent_40rep_DeviceOnlyVar_6replicas_Std10_RequestDevice4.csv", header=TRUE, sep=",")
#Adding the load level column
result_data_csv$LoadLevel <- result_data_csv$Scenario*10
#Create a dataframe with only the device utilization information
utilization=data.frame(result_data_csv$Device0,result_data_csv$Device1,result_data_csv$Device2,result_data_csv$Device3,
result_data_csv$Device4,result_data_csv$Device5,result_data_csv$Device6,result_data_csv$Device7,
result_data_csv$Device8,result_data_csv$Device9,result_data_csv$Device10)
#Calculating the mean utilization for each data line
meanUt=rowMeans(utilization,na.rm=TRUE)
#Create data frame for plotting
mean_data_utilization= data.frame(result_data_csv$LoadLevel,result_data_csv$Alternative,meanUt)
###Plot - Statistics about the utilization, violin plot
ggplot(data=mean_data_utilization, aes(x=factor(result_data_csv$LoadLevel), y=meanUt, fill=result_data_csv$Alternative)) +
geom_violin()+
theme_minimal()+
ylab("Mean device utilization when placements are different (%)")+
xlab("Average load level in %")+
labs(fill = "Optimization objective")+
scale_fill_manual(values=c("#F0E442","#0072B2"))+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
####End
#Completion Time graph for different placements
####Begin
## Getting the data - different placements ONLY
result_data_csv_ut_DifferentOnly <- read.csv(file="./6FunctionInstances/resultsParsed_UtilizationDifferent_40rep_DeviceOnlyVar_6replicas_Std10_RequestDevice4.csv", header=TRUE, sep=",")
## Getting the data - all placements
result_data_csv_ev_All <- read.csv(file="./6FunctionInstances/resultsParsed_40rep_DeviceOnlyVar_6replicas_Std10_RequestDevice4.csv", header=TRUE, sep=",")
result_data_csv_ev_All$LoadLevel <- result_data_csv_ev_All$Scenario*10
##Adding a column for the combination Repetition_Scenario to be able to filter
result_data_csv_ut_DifferentOnly$id <- paste(result_data_csv_ut_DifferentOnly$Repetition,result_data_csv_ut_DifferentOnly$Scenario,sep = "_")
result_data_csv_ev_All$id <- paste(result_data_csv_ev_All$Repetition,result_data_csv_ev_All$Scenario,sep = "_")
##Filter the all data from the combination Repetition/Scenario/Alternative? to get only the info when placements are different
library(dplyr)
result_data_csv_ev_DifferentOnly = result_data_csv_ev_All %>% filter(id %in% result_data_csv_ut_DifferentOnly$id)
#Boxplot
ggplot(data=result_data_csv_ev_DifferentOnly, aes(x=factor(LoadLevel), y=CompletionTime,
fill=Alternative)) +
geom_boxplot()+
theme_minimal()+
ylab("Request completion time when placements are different (ms)")+
xlab("Average load level in %")+
labs(fill = "Optimization objective")+
ylim(0,100)+
scale_fill_manual(values=c("#F0E442","#0072B2"))+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
####End
## FULL CO-LOCATION STUDY
## NORMALLY DISTRIBUTED LOAD - STD 10 (6 function instances/replicas)
####Begin
### Getting the data
result_data_csv <- read.csv(file="./FullColocation/resultsParsed_40rep_DeviceOnlyVar_6replicas_Std10_RequestDevice0.csv", header=TRUE, sep=",")
#Adding the load level column
result_data_csv$LoadLevel <- result_data_csv$Scenario*10
###Filter per loadLevel
loadLevel0_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Overall"),]
loadLevel0_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Marginal"),]
loadLevel1_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Overall"),]
loadLevel1_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Marginal"),]
loadLevel2_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Overall"),]
loadLevel2_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Marginal"),]
loadLevel3_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Overall"),]
loadLevel3_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Marginal"),]
loadLevel4_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Overall"),]
loadLevel4_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Marginal"),]
loadLevel5_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Overall"),]
loadLevel5_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Marginal"),]
loadLevel6_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Overall"),]
loadLevel6_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Marginal"),]
loadLevel7_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Overall"),]
loadLevel7_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Marginal"),]
loadLevel8_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Overall"),]
loadLevel8_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Marginal"),]
loadLevel9_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Overall"),]
loadLevel9_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Marginal"),]
loadLevel10_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Overall"),]
loadLevel10_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Marginal"),]
#Calculating how many are same, different and infeasible, also storing the data about the difference
same=rep(0,11)
different=rep(0,11)
infeasible=rep(0,11)
datadiff=vector()
datareldiff=vector()
datareldiff_m=vector()
datadiffloc=vector()
for (levelNb in seq(1,11)){
difference=vector()
reldifference=vector()
reldifference_m=vector()
for(diff in diffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){infeasible[levelNb]=infeasible[levelNb]+1}
else if (diff==0){same[levelNb]=same[levelNb]+1}
else if (diff>0){different[levelNb]=different[levelNb]+1
difference=append(difference,diff)}
}
for(diff in reldiffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference=append(reldifference,diff)}
}
datadiffloc=append(datadiffloc,rep((levelNb-1)*10,length(difference)))
datadiff=append(datadiff,difference)
datareldiff=append(datareldiff,reldifference)
for(diff in reldiffLoadLevel_Marginal[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference_m=append(reldifference_m,diff)}
}
datareldiff_m=append(datareldiff_m,reldifference_m)
}
##Create the dataframe for plotting the difference
LoadLevel= rep(seq(0,100,10),3)
Outcome=c(rep("Same",11),rep("Different",11),rep("Infeasible",11))
NbPlacements=c(same,different,infeasible)
nbDifferentPlacements =data.frame(LoadLevel,Outcome,NbPlacements)
### Plot - Nb of different placement
ggplot(data=nbDifferentPlacements, aes(x=LoadLevel, y=NbPlacements, fill=Outcome)) +
geom_bar(stat="identity", position = position_stack())+
theme_minimal()+
ylab("# obtained placements")+
xlab("Average load level in %")+
labs(fill = "Overall and Marginal placements are")+
scale_fill_manual(values=c("#A95AA1","#F5793A","#85C0F9"))+
theme(legend.position = "top",axis.title.x = element_text(size = 20),
axis.text.x = element_text(size = 20),
axis.title.y = element_text(size = 20),
axis.text.y = element_text(size = 20),
legend.text=element_text(size = 20),
legend.title=element_text(size = 20))
####End
## RANDOM BEGINNING DEVICE STUDIES
### FIXED LOAD - RANDOM BEGINNING DEVICE
####Begin
### Getting the data
result_data_csv <- read.csv(file="./RandomBeginningDevice/Fixed/resultsParsed_40rep_DeviceOnlyVar_2replicas_Uniform_RequestDeviceRandom.csv", header=TRUE, sep=",")
#Adding the load level column
result_data_csv$LoadLevel <- result_data_csv$Scenario*10
###Filter per loadLevel
loadLevel0_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Overall"),]
loadLevel0_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Marginal"),]
loadLevel1_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Overall"),]
loadLevel1_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Marginal"),]
loadLevel2_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Overall"),]
loadLevel2_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Marginal"),]
loadLevel3_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Overall"),]
loadLevel3_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Marginal"),]
loadLevel4_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Overall"),]
loadLevel4_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Marginal"),]
loadLevel5_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Overall"),]
loadLevel5_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Marginal"),]
loadLevel6_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Overall"),]
loadLevel6_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Marginal"),]
loadLevel7_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Overall"),]
loadLevel7_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Marginal"),]
loadLevel8_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Overall"),]
loadLevel8_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Marginal"),]
loadLevel9_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Overall"),]
loadLevel9_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Marginal"),]
loadLevel10_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Overall"),]
loadLevel10_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Marginal"),]
##Working on visualizing the difference
#Calculate the difference - for Overall Energy
diffLoadLevel0_Overall <- loadLevel0_Marginal$OverallEnergy - loadLevel0_Overall$OverallEnergy
diffLoadLevel1_Overall <- loadLevel1_Marginal$OverallEnergy - loadLevel1_Overall$OverallEnergy
diffLoadLevel2_Overall <- loadLevel2_Marginal$OverallEnergy - loadLevel2_Overall$OverallEnergy
diffLoadLevel3_Overall <- loadLevel3_Marginal$OverallEnergy - loadLevel3_Overall$OverallEnergy
diffLoadLevel4_Overall <- loadLevel4_Marginal$OverallEnergy - loadLevel4_Overall$OverallEnergy
diffLoadLevel5_Overall <- loadLevel5_Marginal$OverallEnergy - loadLevel5_Overall$OverallEnergy
diffLoadLevel6_Overall <- loadLevel6_Marginal$OverallEnergy - loadLevel6_Overall$OverallEnergy
diffLoadLevel7_Overall <- loadLevel7_Marginal$OverallEnergy - loadLevel7_Overall$OverallEnergy
diffLoadLevel8_Overall <- loadLevel8_Marginal$OverallEnergy - loadLevel8_Overall$OverallEnergy
diffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy - loadLevel9_Overall$OverallEnergy
diffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy - loadLevel10_Overall$OverallEnergy
diffLoadLevel_Overall = list(diffLoadLevel0_Overall,diffLoadLevel1_Overall,diffLoadLevel2_Overall,
diffLoadLevel3_Overall,diffLoadLevel4_Overall,diffLoadLevel5_Overall,
diffLoadLevel6_Overall,diffLoadLevel7_Overall,diffLoadLevel8_Overall,
diffLoadLevel9_Overall,diffLoadLevel10_Overall)
#Calculating how many are same, different and infeasible
same=rep(0,11)
different=rep(0,11)
infeasible=rep(0,11)
for (levelNb in seq(1,11)){
print(levelNb)
print(diffLoadLevel_Overall[levelNb])
for(diff in diffLoadLevel_Overall[[levelNb]]){
print(diff)
if (is.na(diff)){infeasible[levelNb]=infeasible[levelNb]+1}
else if (diff==0){same[levelNb]=same[levelNb]+1}
else if (diff>0){different[levelNb]=different[levelNb]+1}
}
}
##Create the dataframe for plotting the difference
LoadLevel= rep(seq(0,100,10),3)
Outcome=c(rep("Same",11),rep("Different",11),rep("Infeasible",11))
NbPlacements=c(same,different,infeasible)
nbDifferentPlacements =data.frame(LoadLevel,Outcome,NbPlacements)
### Plot - Nb of different placement
ggplot(data=nbDifferentPlacements, aes(x=LoadLevel, y=NbPlacements, fill=Outcome)) +
geom_bar(stat="identity", position = position_stack())+
theme_minimal()+
ylab("# obtained placements")+
xlab("Average load level in %")+
labs(fill = "Overall and Marginal placements are")+
scale_fill_manual(values=c("#A95AA1","#F5793A","#85C0F9"))+
theme(legend.position = "top",axis.title.x = element_text(size = 24),
axis.text.x = element_text(size = 24),
axis.title.y = element_text(size = 24),
axis.text.y = element_text(size = 24),
legend.text=element_text(size = 24),
legend.title=element_text(size = 24))
####End
### NORMALLY DISTRIBUTED LOAD (2 function instances/replicas) Std 10 - RANDOM BEGINNING DEVICE
#Graphs for the categorization of placements and the relative difference in overall/marginal energy
####Begin
### Getting the data
result_data_csv <- read.csv(file="./RandomBeginningDevice/Std10/resultsParsed_40rep_DeviceOnlyVar_2replicas_Std10_RequestDeviceRandom.csv", header=TRUE, sep=",")
#Adding the load level column
result_data_csv$LoadLevel <- result_data_csv$Scenario*10
###Filter per loadLevel
loadLevel0_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Overall"),]
loadLevel0_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 0 & result_data_csv$Alternative=="Marginal"),]
loadLevel1_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Overall"),]
loadLevel1_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 10 & result_data_csv$Alternative=="Marginal"),]
loadLevel2_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Overall"),]
loadLevel2_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 20 & result_data_csv$Alternative=="Marginal"),]
loadLevel3_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Overall"),]
loadLevel3_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 30 & result_data_csv$Alternative=="Marginal"),]
loadLevel4_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Overall"),]
loadLevel4_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 40 & result_data_csv$Alternative=="Marginal"),]
loadLevel5_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Overall"),]
loadLevel5_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 50 & result_data_csv$Alternative=="Marginal"),]
loadLevel6_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Overall"),]
loadLevel6_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 60 & result_data_csv$Alternative=="Marginal"),]
loadLevel7_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Overall"),]
loadLevel7_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 70 & result_data_csv$Alternative=="Marginal"),]
loadLevel8_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Overall"),]
loadLevel8_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 80 & result_data_csv$Alternative=="Marginal"),]
loadLevel9_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Overall"),]
loadLevel9_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 90 & result_data_csv$Alternative=="Marginal"),]
loadLevel10_Overall <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Overall"),]
loadLevel10_Marginal <- result_data_csv[which(result_data_csv$LoadLevel == 100 & result_data_csv$Alternative=="Marginal"),]
##Working on visualizing the difference
#Calculate the difference - for Overall Energy
diffLoadLevel0_Overall <- loadLevel0_Marginal$OverallEnergy - loadLevel0_Overall$OverallEnergy
diffLoadLevel1_Overall <- loadLevel1_Marginal$OverallEnergy - loadLevel1_Overall$OverallEnergy
diffLoadLevel2_Overall <- loadLevel2_Marginal$OverallEnergy - loadLevel2_Overall$OverallEnergy
diffLoadLevel3_Overall <- loadLevel3_Marginal$OverallEnergy - loadLevel3_Overall$OverallEnergy
diffLoadLevel4_Overall <- loadLevel4_Marginal$OverallEnergy - loadLevel4_Overall$OverallEnergy
diffLoadLevel5_Overall <- loadLevel5_Marginal$OverallEnergy - loadLevel5_Overall$OverallEnergy
diffLoadLevel6_Overall <- loadLevel6_Marginal$OverallEnergy - loadLevel6_Overall$OverallEnergy
diffLoadLevel7_Overall <- loadLevel7_Marginal$OverallEnergy - loadLevel7_Overall$OverallEnergy
diffLoadLevel8_Overall <- loadLevel8_Marginal$OverallEnergy - loadLevel8_Overall$OverallEnergy
diffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy - loadLevel9_Overall$OverallEnergy
diffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy - loadLevel10_Overall$OverallEnergy
diffLoadLevel_Overall = list(diffLoadLevel0_Overall,diffLoadLevel1_Overall,diffLoadLevel2_Overall,
diffLoadLevel3_Overall,diffLoadLevel4_Overall,diffLoadLevel5_Overall,
diffLoadLevel6_Overall,diffLoadLevel7_Overall,diffLoadLevel8_Overall,
diffLoadLevel9_Overall,diffLoadLevel10_Overall)
#Calculate the relative difference - for Overall Energy
reldiffLoadLevel0_Overall <- loadLevel0_Marginal$OverallEnergy / loadLevel0_Overall$OverallEnergy
reldiffLoadLevel1_Overall <- loadLevel1_Marginal$OverallEnergy / loadLevel1_Overall$OverallEnergy
reldiffLoadLevel2_Overall <- loadLevel2_Marginal$OverallEnergy / loadLevel2_Overall$OverallEnergy
reldiffLoadLevel3_Overall <- loadLevel3_Marginal$OverallEnergy / loadLevel3_Overall$OverallEnergy
reldiffLoadLevel4_Overall <- loadLevel4_Marginal$OverallEnergy / loadLevel4_Overall$OverallEnergy
reldiffLoadLevel5_Overall <- loadLevel5_Marginal$OverallEnergy / loadLevel5_Overall$OverallEnergy
reldiffLoadLevel6_Overall <- loadLevel6_Marginal$OverallEnergy / loadLevel6_Overall$OverallEnergy
reldiffLoadLevel7_Overall <- loadLevel7_Marginal$OverallEnergy / loadLevel7_Overall$OverallEnergy
reldiffLoadLevel8_Overall <- loadLevel8_Marginal$OverallEnergy / loadLevel8_Overall$OverallEnergy
reldiffLoadLevel9_Overall <- loadLevel9_Marginal$OverallEnergy / loadLevel9_Overall$OverallEnergy
reldiffLoadLevel10_Overall <- loadLevel10_Marginal$OverallEnergy / loadLevel10_Overall$OverallEnergy
reldiffLoadLevel_Overall = list(reldiffLoadLevel0_Overall,reldiffLoadLevel1_Overall,reldiffLoadLevel2_Overall,
reldiffLoadLevel3_Overall,reldiffLoadLevel4_Overall,reldiffLoadLevel5_Overall,
reldiffLoadLevel6_Overall,reldiffLoadLevel7_Overall,reldiffLoadLevel8_Overall,
reldiffLoadLevel9_Overall,reldiffLoadLevel10_Overall)
#Calculate the relative difference - for Marginal Energy
reldiffLoadLevel0_Marginal <- loadLevel0_Overall$MarginalEnergy / loadLevel0_Marginal$MarginalEnergy
reldiffLoadLevel1_Marginal <- loadLevel1_Overall$MarginalEnergy / loadLevel1_Marginal$MarginalEnergy
reldiffLoadLevel2_Marginal <- loadLevel2_Overall$MarginalEnergy / loadLevel2_Marginal$MarginalEnergy
reldiffLoadLevel3_Marginal <- loadLevel3_Overall$MarginalEnergy / loadLevel3_Marginal$MarginalEnergy
reldiffLoadLevel4_Marginal <- loadLevel4_Overall$MarginalEnergy / loadLevel4_Marginal$MarginalEnergy
reldiffLoadLevel5_Marginal <- loadLevel5_Overall$MarginalEnergy / loadLevel5_Marginal$MarginalEnergy
reldiffLoadLevel6_Marginal <- loadLevel6_Overall$MarginalEnergy / loadLevel6_Marginal$MarginalEnergy
reldiffLoadLevel7_Marginal <- loadLevel7_Overall$MarginalEnergy / loadLevel7_Marginal$MarginalEnergy
reldiffLoadLevel8_Marginal <- loadLevel8_Overall$MarginalEnergy / loadLevel8_Marginal$MarginalEnergy
reldiffLoadLevel9_Marginal <- loadLevel9_Overall$MarginalEnergy / loadLevel9_Marginal$MarginalEnergy
reldiffLoadLevel10_Marginal <- loadLevel10_Overall$MarginalEnergy / loadLevel10_Marginal$MarginalEnergy
reldiffLoadLevel_Marginal = list(reldiffLoadLevel0_Marginal,reldiffLoadLevel1_Marginal,reldiffLoadLevel2_Marginal,
reldiffLoadLevel3_Marginal,reldiffLoadLevel4_Marginal,reldiffLoadLevel5_Marginal,
reldiffLoadLevel6_Marginal,reldiffLoadLevel7_Marginal,reldiffLoadLevel8_Marginal,
reldiffLoadLevel9_Marginal,reldiffLoadLevel10_Marginal)
#Calculating how many are same, different and infeasible, also storing the data about the difference
same=rep(0,11)
different=rep(0,11)
infeasible=rep(0,11)
datadiff=vector()
datareldiff=vector()
datareldiff_m=vector()
datadiffloc=vector()
for (levelNb in seq(1,11)){
difference=vector()
reldifference=vector()
reldifference_m=vector()
for(diff in diffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){infeasible[levelNb]=infeasible[levelNb]+1}
else if (diff==0){same[levelNb]=same[levelNb]+1}
else if (diff>0){different[levelNb]=different[levelNb]+1
difference=append(difference,diff)}
}
for(diff in reldiffLoadLevel_Overall[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference=append(reldifference,diff)}
}
datadiffloc=append(datadiffloc,rep((levelNb-1)*10,length(difference)))
datadiff=append(datadiff,difference)
datareldiff=append(datareldiff,reldifference)
for(diff in reldiffLoadLevel_Marginal[[levelNb]]){
if (is.na(diff)){}
else if (diff>1){reldifference_m=append(reldifference_m,diff)}
}
datareldiff_m=append(datareldiff_m,reldifference_m)
}
##Create the dataframe for plotting the difference
LoadLevel= rep(seq(0,100,10),3)
Outcome=c(rep("Same",11),rep("Different",11),rep("Infeasible",11))
NbPlacements=c(same,different,infeasible)
nbDifferentPlacements =data.frame(LoadLevel,Outcome,NbPlacements)
### Plot - Nb of different placement
ggplot(data=nbDifferentPlacements, aes(x=LoadLevel, y=NbPlacements, fill=Outcome)) +
geom_bar(stat="identity", position = position_stack())+
theme_minimal()+
ylab("# obtained placements")+
xlab("Average load level in %")+
labs(fill = "Overall and Marginal placements are")+
scale_fill_manual(values=c("#A95AA1","#F5793A","#85C0F9"))+
theme(legend.position = "top",axis.title.x = element_text(size = 24),
axis.text.x = element_text(size = 24),
axis.title.y = element_text(size = 24),
axis.text.y = element_text(size = 24),
legend.text=element_text(size = 24),
legend.title=element_text(size = 24))
##Create the dataframe for statistics about the difference - OVERALL ENERGY
statisticsPlacement=data.frame(datadiffloc,datadiff,datareldiff)
#Get numbers for the text
quantile(statisticsPlacement$datareldiff,0.10)
quantile(statisticsPlacement$datareldiff,0.90)
###Plot - Statistics about the relative difference, violin plot
ggplot(data=statisticsPlacement, aes(x=factor(datadiffloc), y=datareldiff)) +
geom_violin()+
theme_minimal()+
ylab("Relative difference in overall energy (J)")+
xlab("Average load level in %")+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
##Create the dataframe for statistics about the difference - MARGINAL ENERGY
statisticsPlacement_m=data.frame(datadiffloc,datareldiff_m)
#Get numbers for the text
quantile(statisticsPlacement_m$datareldiff,0.10)
quantile(statisticsPlacement_m$datareldiff,0.90)
###Plot - Statistics about the relative difference, violin plot
ggplot(data=statisticsPlacement_m, aes(x=factor(datadiffloc), y=datareldiff_m)) +
geom_violin()+
theme_minimal()+
ylab("Relative difference in marginal energy (J)")+
xlab("Average load level in %")+
theme(legend.position = "top",axis.title.x = element_text(size = 18),
axis.text.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.y = element_text(size = 18),
legend.text=element_text(size = 18),
legend.title=element_text(size = 18))
####End
#Average included device utilization data graph
####Begin
### Getting the data - different placements ONLY
result_data_csv <- read.csv(file="./RandomBeginningDevice/Std10/resultsParsed_UtilizationDifferent_40rep_DeviceOnlyVar_2replicas_Std10_RequestDeviceRandom.csv", header=TRUE, sep=",")