Skip to content
Snippets Groups Projects
Commit 823ed8e2 authored by Anderson Tavares's avatar Anderson Tavares
Browse files

More stuff

parent 7480110f
Branches
No related tags found
No related merge requests found
Pipeline #292 passed
......@@ -62,8 +62,8 @@
<div class="content">
<div>
<div id="reg01"></div><h2>Background and Overview</h2>
<h3 class="hidden">Euclidean Geometry</h3>
<div class="blocks2 hidden">
<h3>Euclidean Geometry</h3>
<div class="blocks2">
<div class="block2 reg01euclid row2">
<div class="figure">
<img src="figs/euclid.jpg">
......@@ -91,8 +91,8 @@
<div class="figcaption">Solid angles and Volumes</div>
</div>
</div>
<h3 class="hidden">Perspective</h3>
<div class="blocks2 hidden">
<h3>Perspective</h3>
<div class="blocks2">
<div class="block2 col2">
<div class="figure"><img src="figs/optics.svg"></div>
<div class="figcaption">Euclid's&nbsp;<span class="emph">Optics</span> &nbsp;book</div>
......@@ -117,8 +117,8 @@
<div class="figcaption">Leon Battista Alberti's&nbsp; <span class="emph">De Pictura</span> (1435)</div>
</div>
</div>
<h3 class="hidden">Projective Geometry</h3>
<div class="blocks2 hidden">
<h3>Projective Geometry</h3>
<div class="blocks2">
<div class="block2 row2">
<div class="figure"><img src="figs/kepler.jpg"></div>
<div class="figcaption">Johannes Kepler (1571-1630)</div>
......@@ -183,8 +183,8 @@
</ul>
</div>
</div>
<h3 class="hidden">Photogrammetry</h3>
<div class="blocks2 hidden">
<h3>Photogrammetry</h3>
<div class="blocks2">
<div class="block2 col2 row2">
<div class="figure"><img src="figs/cameraobscura.jpg"></div>
<div class="figcaption">Photography: Camera Obscura</div>
......@@ -241,8 +241,8 @@
</div>
</div>
<h3 class="hidden">Computer vision</h3>
<div class="blocks2 hidden">
<h3>Computer vision</h3>
<div class="blocks2">
<div class="block2 row2">
<div class="figure"><img src="figs/first-scan.jpg"></div>
<div class="figcaption">First digitized image (1957)</div>
......@@ -288,7 +288,7 @@
<p class="part">Representations</p>
<div id="reg02"></div><h2>Cartesian Representations</h2>
<div class="blocks2 hidden">
<div class="blocks2">
<div class="block2 row2 col2">
<div class="figure"><img src="figs/reg02-cartesian.svg"></div>
<div class="figcaption"><span class="kw">Cartesian coordinate system</span></div>
......@@ -305,9 +305,13 @@
<div class="figure"><img src="figs/lefthand.svg"></div>
<div class="figcaption">Left hand system</div>
</div>
<div class="block2">
<div class="figure"><img src="figs/lefthand.svg"></div>
<div class="figcaption">Left hand system</div>
</div>
</div>
<h3 class="hidden">Points in <span class="keq">\mathbb{E}^2</span></h3>
<div class="blocks2 hidden">
<h3>Points in <span class="keq">\mathbb{E}^2</span></h3>
<div class="blocks2">
<div class="block2 row3 col2">
<p><span class="kw">Point</span> in <span class="keq">\mathbb{E}^2\Rightarrow</span> <span class="kw">Vector</span> <span class="keq">\vec{x}\in \mathbb{R}^2</span>, <span class="keq">\vec{x}=\begin{bmatrix}x_1\\x_2\end{bmatrix}</span></p>
<p><span class="kw">Vector sum</span>: <span class="keq">\vec{z}=\vec{x}+\vec{y}=\begin{bmatrix}x_1+y_1\\x_2+y_2\end{bmatrix}</span></p>
......@@ -357,8 +361,8 @@
<div class="figcaption">Left hand system</div>
</div>
</div>
<h3 class="hidden">Lines in <span class="keq">\mathbb{E}^2</span></h3>
<div class="blocks2 hidden">
<h3>Lines in <span class="keq">\mathbb{E}^2</span></h3>
<div class="blocks2">
<div class="block2 row2 col2">
<p><span class="kw">Line</span> in <span class="mr-math"><span class="mr-bb"><span class="mr-mord">E</span></span><span class="mr-msupsub"><span class="mr-msup"><span class="mr-mtext">2</span></span></span></span>: <span class="keq">\vec{x}</span> satisfying the <span class="kw">equation of the line</span>:</p>
<div class="eq keq">l_1x_1+l_2x_2=\vec{l}\cdot\vec{x}=\Delta</div>
......@@ -483,6 +487,50 @@
<p>Line as intersection of planes</p>
</div>
</div>
<h3>Basic geometric operations</h3>
<div class="blocks2">
<div class="block2 col2 row2">
<h4 class="center">Line from two points in <span class="keq">\mathbb{E}^2</span></h4>
<div class="eq keq">\overbrace{\vec{x}-\vec{y}=\begin{bmatrix}x_1-y_1\\x_2-y_2\end{bmatrix}}^{\text{Tangent vector}}\hspace{10px}\overbrace{\vec{l}=\pm\begin{bmatrix}y_2-x_2\\x_1-y_1\end{bmatrix}}^{\text{Normal vector}}</div>
<div class="eq keq">\hat{l}=\displaystyle\frac{\vec{l}}{\|\vec{l}\|}, \Delta=\hat{l}\vec{x}</div>
<p class="center"><span class="eq keq">\vec{x}=\vec{y}\Rightarrow \vec{l}=\begin{bmatrix}0&0\end{bmatrix}^T</span> (not a line normal)</p>
</div>
<div class="block2 row2">
<div class="figure"><img src="figs/placeholder.svg"></div>
<div class="figcaption">Vector form</div>
</div>
<div class="block2 col2 row2">
<h4 class="center">Intersection between two lines in <span class="keq">\mathbb{E}^2</span></h4>
<p>Two normalized lines: <span class="keq">(\hat{l},\Delta_l)</span> and <span class="keq">(\hat{m},\Delta_m)</span></p>
<p><span class="keq">x_l=\begin{bmatrix}\hspace{-3px}l_2&\hspace{-5px}l_1\Delta_l\\\hspace{-3px}-l_1&\hspace{-5px}l_2\Delta_l\end{bmatrix}\hspace{-5px}\begin{bmatrix}s\\1\end{bmatrix}\hspace{-3px}=\hspace{8px}\begin{bmatrix}m_2&m_1\Delta_m\\-m_1&m_2\Delta_m\end{bmatrix}\hspace{-5px}\begin{bmatrix}t\\1\end{bmatrix}=x_m</span></p>
<p>Use <span class="keq">l_1^2+l_2^2=m_1^2+m_2^2=1</span> and solve for <span class="keq">s</span> and <span class="keq">t</span></p>
<div class="eq keq">\displaystyle\begin{bmatrix}s\\t\end{bmatrix}\hspace{-2px} =\hspace{-2px} \frac{1}{l_2m_1-l_1m_2}\hspace{-1px}\begin{bmatrix}-\Delta_ll_1m_1-\Delta_ll_2m_2+\Delta_m\\-\Delta_l+\Delta_2l_1m_1+\Delta_2l_2m_2\end{bmatrix}</div>
<div class="eq keq">x = x_l = x_m = \displaystyle \frac{1}{l_2m_1-l_1m_2}\begin{bmatrix}\Delta_ml_2-\Delta_lm_2\\\Delta_lm_1-\Delta_ml_1\end{bmatrix}</div>
</div>
<div class="block2 row2">
<div class="figure"><img src="figs/placeholder.svg"></div>
<div class="figcaption">Intersection between two lines</div>
</div>
<div class="block2 col2 row2">
<h4 class="center">Distance between point and line</h4>
<p>Point <span class="keq">\vec{x}</span> and line <span class="keq">(\hat{l},\Delta)</span></p>
<p>Tangent vector <span class="keq">\hat{t}=\left[-l_2, l_1\right]\Rightarrow \hat{t}\perp\hat{l}</span></p>
<p><span class="keq">\{\hat{l},\hat{t}\}</span> is a basis for <span class="keq">\mathbb{R}^2</span></p>
<p><span class="keq">\vec{x}=(\hat{l}\cdot\vec{x})\hat{l}+(\hat{t}\cdot\vec{x})\hat{t}=\vec{x}_l+\vec{x}_t</span></p>
<p>Point on line closest to origin: <span class="keq">\vec{x}_0=\Delta\hat{l}</span></p>
<p><span class="keq">\{\vec{x}_0, \vec{x}_l, [0,0]\}</span> are co-linear (<span class="keq">\vec{x}_0\perp \hat{l}</span> and <span class="keq">\vec{x}_l\perp \hat{l}</span>)</p>
<p><span class="keq">
\begin{aligned}
d &= \|\vec{x}_l-\vec{x}_0\|=\|(\hat{l}\cdot\vec{x})\hat{l}-\Delta\hat{l}\|\\&=\|\hat{l}(\hat{l}\cdot\vec{x}-\Delta)\|=|\hat{l}\cdot\vec{x}-\Delta|
\end{aligned}
</span></p>
</div>
<div class="block2 row2">
<div class="figure"><img src="figs/placeholder.svg"></div>
<div class="figcaption">Distance between point and line</div>
</div>
</div>
<div id="reg03"></div><h2>Homogeneous Representations in 2D</h2>
......
......@@ -62,8 +62,8 @@
\div.content{
\div{
\div#reg01\h2{Background and Overview}
\h3.hidden{Euclidean Geometry}
\div.blocks2.hidden{
\h3{Euclidean Geometry}
\div.blocks2{
\div.block2.reg01euclid.row2{
\div.figure{
\img(src="figs/euclid.jpg")
......@@ -91,8 +91,8 @@
\div.figcaption{Solid angles and Volumes}
}
}
\h3.hidden{Perspective}
\div.blocks2.hidden{
\h3{Perspective}
\div.blocks2{
\div.block2.col2{
\div.figure{\img(src="figs/optics.svg")}
\div.figcaption{Euclid's&nbsp;\span.emph{Optics} &nbsp;book}
......@@ -117,8 +117,8 @@
\div.figcaption{Leon Battista Alberti's&nbsp; \span.emph{De Pictura} (1435)}
}
}
\h3.hidden{Projective Geometry}
\div.blocks2.hidden{
\h3{Projective Geometry}
\div.blocks2{
\div.block2.row2{
\div.figure{\img(src="figs/kepler.jpg")}
\div.figcaption{Johannes Kepler (1571-1630)}
......@@ -183,8 +183,8 @@
}
}
}
\h3.hidden{Photogrammetry}
\div.blocks2.hidden{
\h3{Photogrammetry}
\div.blocks2{
\div.block2.col2.row2{
\div.figure{\img(src="figs/cameraobscura.jpg")}
\div.figcaption{Photography: Camera Obscura}
......@@ -241,8 +241,8 @@
}
}
\h3.hidden{Computer vision}
\div.blocks2.hidden{
\h3{Computer vision}
\div.blocks2{
\div.block2.row2{
\div.figure{\img(src="figs/first-scan.jpg")}
\div.figcaption{First digitized image (1957)}
......@@ -288,7 +288,7 @@
\p.part{Representations}
\div#reg02\h2{Cartesian Representations}
\div.blocks2.hidden{
\div.blocks2{
\div.block2.row2.col2{
\div.figure{\img(src="figs/reg02-cartesian.svg")}
\div.figcaption{\span.kw{Cartesian coordinate system}}
......@@ -305,9 +305,13 @@
\div.figure{\img(src="figs/lefthand.svg")}
\div.figcaption{Left hand system}
}
\div.block2{
\div.figure{\img(src="figs/lefthand.svg")}
\div.figcaption{Left hand system}
}
}
\h3.hidden{Points in \span.keq{\\mathbb\{E\}^2}}
\div.blocks2.hidden{
\h3{Points in \span.keq{\\mathbb\{E\}^2}}
\div.blocks2{
\div.block2.row3.col2{
\p{\span.kw{Point} in \span.keq{\\mathbb\{E\}^2\\Rightarrow} \span.kw{Vector} \span.keq{\\vec\{x\}\\in \\mathbb\{R\}^2}, \span.keq{\\vec\{x\}=\\begin\{bmatrix\}x_1\\\\x_2\\end\{bmatrix\}}}
\p{\span.kw{Vector sum}: \span.keq{\\vec\{z\}=\\vec\{x\}+\\vec\{y\}=\\begin\{bmatrix\}x_1+y_1\\\\x_2+y_2\\end\{bmatrix\}}}
......@@ -357,8 +361,8 @@
\div.figcaption{Left hand system}
}
}
\h3.hidden{Lines in \span.keq{\\mathbb\{E\}^2}}
\div.blocks2.hidden{
\h3{Lines in \span.keq{\\mathbb\{E\}^2}}
\div.blocks2{
\div.block2.row2.col2{
\p{\span.kw{Line} in $\bb{E}^2$: \span.keq{\\vec\{x\}} satisfying the \span.kw{equation of the line}:}
\div.eq.keq{l_1x_1+l_2x_2=\\vec\{l\}\\cdot\\vec\{x\}=\\Delta}
......@@ -483,6 +487,50 @@
\p{Line as intersection of planes}
}
}
\h3{Basic geometric operations}
\div.blocks2{
\div.block2.col2.row2{
\h4.center{Line from two points in \span.keq{\\mathbb\{E\}^2}}
\div.eq.keq{\\overbrace\{\\vec\{x\}-\\vec\{y\}=\\begin\{bmatrix\}x_1-y_1\\\\x_2-y_2\\end\{bmatrix\}\}^\{\\text\{Tangent vector\}\}\\hspace\{10px\}\\overbrace\{\\vec\{l\}=\\pm\\begin\{bmatrix\}y_2-x_2\\\\x_1-y_1\\end\{bmatrix\}\}^\{\\text\{Normal vector\}\}}
\div.eq.keq{\\hat\{l\}=\\displaystyle\\frac\{\\vec\{l\}\}\{\\|\\vec\{l\}\\|\}, \\Delta=\\hat\{l\}\\vec\{x\}}
\p.center{\span.eq.keq{\\vec\{x\}=\\vec\{y\}\\Rightarrow \\vec\{l\}=\\begin\{bmatrix\}0&0\\end\{bmatrix\}^T} (not a line normal)}
}
\div.block2.row2{
\div.figure{\img(src="figs/placeholder.svg")}
\div.figcaption{Vector form}
}
\div.block2.col2.row2{
\h4.center{Intersection between two lines in \span.keq{\\mathbb\{E\}^2}}
\p{Two normalized lines: \span.keq{(\\hat\{l\},\\Delta_l)} and \span.keq{(\\hat\{m\},\\Delta_m)}}
\p{\span.keq{x_l=\\begin\{bmatrix\}\\hspace\{-3px\}l_2&\\hspace\{-5px\}l_1\\Delta_l\\\\\\hspace\{-3px\}-l_1&\\hspace\{-5px\}l_2\\Delta_l\\end\{bmatrix\}\\hspace\{-5px\}\\begin\{bmatrix\}s\\\\1\\end\{bmatrix\}\\hspace\{-3px\}=\\hspace\{8px\}\\begin\{bmatrix\}m_2&m_1\\Delta_m\\\\-m_1&m_2\\Delta_m\\end\{bmatrix\}\\hspace\{-5px\}\\begin\{bmatrix\}t\\\\1\\end\{bmatrix\}=x_m}}
\p{Use \span.keq{l_1^2+l_2^2=m_1^2+m_2^2=1} and solve for \span.keq{s} and \span.keq{t}}
\div.eq.keq{\\displaystyle\\begin\{bmatrix\}s\\\\t\\end\{bmatrix\}\\hspace\{-2px\} =\\hspace\{-2px\} \\frac\{1\}\{l_2m_1-l_1m_2\}\\hspace\{-1px\}\\begin\{bmatrix\}-\\Delta_ll_1m_1-\\Delta_ll_2m_2+\\Delta_m\\\\-\\Delta_l+\\Delta_2l_1m_1+\\Delta_2l_2m_2\\end\{bmatrix\}}
\div.eq.keq{x = x_l = x_m = \\displaystyle \\frac\{1\}\{l_2m_1-l_1m_2\}\\begin\{bmatrix\}\\Delta_ml_2-\\Delta_lm_2\\\\\\Delta_lm_1-\\Delta_ml_1\\end\{bmatrix\}}
}
\div.block2.row2{
\div.figure{\img(src="figs/placeholder.svg")}
\div.figcaption{Intersection between two lines}
}
\div.block2.col2.row2{
\h4.center{Distance between point and line}
\p{Point \span.keq{\\vec\{x\}} and line \span.keq{(\\hat\{l\},\\Delta)}}
\p{Tangent vector \span.keq{\\hat\{t\}=\\left[-l_2, l_1\\right]\\Rightarrow \\hat\{t\}\\perp\\hat\{l\}}}
\p{\span.keq{\\\{\\hat\{l\},\\hat\{t\}\\\}} is a basis for \span.keq{\\mathbb\{R\}^2}}
\p{\span.keq{\\vec\{x\}=(\\hat\{l\}\\cdot\\vec\{x\})\\hat\{l\}+(\\hat\{t\}\\cdot\\vec\{x\})\\hat\{t\}=\\vec\{x\}_l+\\vec\{x\}_t}}
\p{Point on line closest to origin: \span.keq{\\vec\{x\}_0=\\Delta\\hat\{l\}}}
\p{\span.keq{\\\{\\vec\{x\}_0, \\vec\{x\}_l, [0,0]\\\}} are co-linear (\span.keq{\\vec\{x\}_0\\perp \\hat\{l\}} and \span.keq{\\vec\{x\}_l\\perp \\hat\{l\}})}
\p{\span.keq{
\\begin\{aligned\}
d &= \\|\\vec\{x\}_l-\\vec\{x\}_0\\|=\\|(\\hat\{l\}\\cdot\\vec\{x\})\\hat\{l\}-\\Delta\\hat\{l\}\\|\\\\&=\\|\\hat\{l\}(\\hat\{l\}\\cdot\\vec\{x\}-\\Delta)\\|=|\\hat\{l\}\\cdot\\vec\{x\}-\\Delta|
\\end\{aligned\}
}}
}
\div.block2.row2{
\div.figure{\img(src="figs/placeholder.svg")}
\div.figcaption{Distance between point and line}
}
}
\div#reg03\h2{Homogeneous Representations in 2D}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment