<h3class="hidden">Points in <spanclass="keq">\mathbb{E}^2</span></h3>
<divclass="blocks2 hidden">
<h3>Points in <spanclass="keq">\mathbb{E}^2</span></h3>
<divclass="blocks2">
<divclass="block2 row3 col2">
<p><spanclass="kw">Point</span> in <spanclass="keq">\mathbb{E}^2\Rightarrow</span><spanclass="kw">Vector</span><spanclass="keq">\vec{x}\in \mathbb{R}^2</span>, <spanclass="keq">\vec{x}=\begin{bmatrix}x_1\\x_2\end{bmatrix}</span></p>
<h3class="hidden">Lines in <spanclass="keq">\mathbb{E}^2</span></h3>
<divclass="blocks2 hidden">
<h3>Lines in <spanclass="keq">\mathbb{E}^2</span></h3>
<divclass="blocks2">
<divclass="block2 row2 col2">
<p><spanclass="kw">Line</span> in <spanclass="mr-math"><spanclass="mr-bb"><spanclass="mr-mord">E</span></span><spanclass="mr-msupsub"><spanclass="mr-msup"><spanclass="mr-mtext">2</span></span></span></span>: <spanclass="keq">\vec{x}</span> satisfying the <spanclass="kw">equation of the line</span>:</p>
<p>Point on line closest to origin: <spanclass="keq">\vec{x}_0=\Delta\hat{l}</span></p>
<p><spanclass="keq">\{\vec{x}_0, \vec{x}_l, [0,0]\}</span> are co-linear (<spanclass="keq">\vec{x}_0\perp \hat{l}</span> and <spanclass="keq">\vec{x}_l\perp \hat{l}</span>)</p>
<p><spanclass="keq">
\begin{aligned}
d &= \|\vec{x}_l-\vec{x}_0\|=\|(\hat{l}\cdot\vec{x})\hat{l}-\Delta\hat{l}\|\\&=\|\hat{l}(\hat{l}\cdot\vec{x}-\Delta)\|=|\hat{l}\cdot\vec{x}-\Delta|
\p{Point on line closest to origin: \span.keq{\\vec\{x\}_0=\\Delta\\hat\{l\}}}
\p{\span.keq{\\\{\\vec\{x\}_0, \\vec\{x\}_l, [0,0]\\\}} are co-linear (\span.keq{\\vec\{x\}_0\\perp \\hat\{l\}} and \span.keq{\\vec\{x\}_l\\perp \\hat\{l\}})}
\p{\span.keq{
\\begin\{aligned\}
d &= \\|\\vec\{x\}_l-\\vec\{x\}_0\\|=\\|(\\hat\{l\}\\cdot\\vec\{x\})\\hat\{l\}-\\Delta\\hat\{l\}\\|\\\\&=\\|\\hat\{l\}(\\hat\{l\}\\cdot\\vec\{x\}-\\Delta)\\|=|\\hat\{l\}\\cdot\\vec\{x\}-\\Delta|