TDDD55 Programming Exercise 1: Attribute
Grammars and Top-Down Parsing (HT 2011)

1 Introduction

Although not as flexible as bottom-up parsers, top-down parsers can easily
be implemented by hand, and as such they may be more convenient than a
bottom-up parsers. In this exercise you will specify a language of mathematical
expressions using an attribute grammar, and then write a top-down parser to
calculate the value of expressions in the language.

The language consists of numbers, symbolic constants, single-argument func-
tions, one unary and five binary operators. A grammar for the language is given
below, but this grammar is not suitable for implementation using a top-down
technique since it is ambiguous and contains left recursion.

S —> E <end of line> S Single expression
| <end of file> No more input
E->E+ E Addition
| E-E Subtraction
| E*xE Multiplication
| E/E Division
| E"E Exponentiation
| - E Unary minus
| CE) Grouping
| id (E) Function call
| id Symbolic constant
| num Numeric value

2 Requirements

Rewrite the grammar in the previous section so that the precedence and as-
sociativity of all operators becomes obvious. Your grammar may contain left
recursion. The operator precedence is unary negation before exponentiation
before multiplication and division, before addition and subtraction. Addition,
subtraction, multiplication and division are left associative. Exponentiation is
right-associative.

Eliminate left recursion from your grammar and revise it so it is suitable for
implementation in a predictive top-down parser.

Implement your attribute grammar in a C++ class named Parser. The
Parser class should contain a method named Parse that returns the value of

a single statement in the language. Your interpreter should understand the
following symbolic constants and functions:

pi 3.14159265
e 2.71828183

1InQ) Natural logarithm
logQ Base 10 logarithm
expQ) Powers of e

sin() Sine

cos() Cosine

tan() Tangent

arcsin() Arc sine

arccos() Arc cosine
arctan() Arc tangent

All the functions are available in the standard math library. See the Unix
manual pages for details.

Implement error recovery in your parser. The simplest form of error recovery
is to scan tokens to the end of a line and then resume parsing. Feel free to
implement a smarter error recovery strategy.

Hand in the following:
e Printouts of all the files you modified or created.
e Answers to the questions in the next section.

e Test data that show that the program works as specified. Be sure to test
error recovery, both from parser and scanner errors. Be sure to check that
error recovery does not interfere with the next input line. Check that
precedence and associativity rules are followed.

Demonstrate your solution to your lab assistant during a laboratory session.
Send an e-mail (one e-mail per group) with your modified code and answers to
the questions to the same assistant, put TDDD55, assignment number and your
LiU logins in the e-mail subject line.

3 Questions

Question 1 Define a regular expression for numeric constants. It should
allow integers, numbers with a fractional part and numbers with an exponent.
A number containing a decimal point must have at least one digit before or after
the decimal point (or both). The exponent may have a sign, plus or minus, and
is always an integer.

Allowed Not Allowed
1234 A123

3.14 .

.112 112.a

112. 1E2.3

12.34 2.3e3.

34E-23 23E 54
34 .E+3
2.2eb5

Question 2 Construct a DFA that accepts the same language as the regular
expression you defined in the previous question. Suggest how to implementa a
scanner based on your DFA.

4 Supporting Programs

The files 1abl.cc and labl.hh contain a skeleton for the parser class and a
class called Trace that can be used to trace invocation of functions. See the
Parser method for an example of how to use it. Objects of the class print an
entry message when created and an exit message when destroyed.

The files lex.cc and lex.hh contain a scanner class. To use it create an
object of type Scanner and call its Scan method to get a token. Tokens returned
are of type Token. See the comments in lex.hh for a description of how they
work.

The file main. cc contains a sample main program. You may have to modify
it depending on how you choose to report errors from your parser.

If the scanner encounters an error it will throw an object of type ScannerError.
Your main program should catch this exception (the sample main program
does), print an error message (you can print a ScannerError object using stream
operators) and then perform error recovery.

