The Language

The language you are to compile is in some ways similar to Pascal, but uses
fomr syntax from C and Ada. It supports nested functions, one-dimensional
arrays and numeric data types.

1 The Program Structure

A program consists of three sections, as depicted in figure 1. The first section,
declarations holds declarations of all global variables. The next section, func-
tions holds all the functions defined in the program. The final section, body is
a code block representing the main program body.

Figure 1 The structure of a program.

// First section, declarations

declare
varl : typel;
var2 : type2;

// Second section, functions

function funcl (params) : type
begin

end;

function func2 (params) : type
begin

end;
// Final section, main program code block
begin

end;

2 Function Definitions

The structure of a function definitions is shown in figure 2. It starts out with the
keyword function, followed by the function’s name, its parameters and return
type. Next come a block of local variable declarations and then local function
declarations. The function is concluded with a code block for the function body.

Figure 2 Structure of a function definition.

function name (paraml , param2 , ...) : type
declare

varl : typel;

var2 : type2;

function locall (params) : type
begin
end;

begin
Function body;
end;

Functions that are declared within another function have access to the local
variables and parameters of the surrounding function. The language has static
scope.

Figure 3 shows some valid function definitions.

3 Declaration Blocks

Declarations can appear either at the beginning of a program, or at the begin-
ning of a function. The purpose of a declaration block is to define the names
and types of variables used in subsequent code blocks.

A declaration block starts with the keyword declare, followed by one or
more declarations. Each declaration is an identifier followed by a colon and a
type. The declaration block is terminated by the start of anything that does not
look like a declaration. All declaration blocks are optional and may be omitted
completely.

There are examples of declaration blocks in figures 1, 2 and 3.

4 Code Blocks

A code block starts with the keyword begin, which is followed by zero or more
statements. The code block is terminated by end. Each statement must be
terminated by a semicolon.

There are five types of statements: if statements, assignments, return state-
ments, function calls and while statements. Each type of statement is described

Figure 3 Examples of valid function definitions.

function fac (x : integer) : integer
begin

if x == 1 then begin return 1; end

else begin return x * fac(x - 1); end if;
end;

function max3 (x : array 5 of real) : real
declare
tmp : real;
i : integer;
begin
i=1;
tmp := x[0];
while i < 5 do
begin
if tmp < x[i] then begin tmp = x[i]; end;
i::=1i+1;
end while;
return tmp;
end;

below.

4.1 The if statement

An if statement starts with the keyworkd if, followed by a condition, the key-
word then, a code block, an optional elseif list and an optional else part. The
structure is shown in figure 4.

The elseif list is a list of one or more pieces of code consisting of the keyword
elseif, followed by a condition, the keyword then and a code block.

The else part is a piece of code consisting of the keyword else followed by
a code block.

The last end in an if statement must be followed by the keyword if.

The if statement tests each of its conditions, specified after the if or elseif
in order. If a condition is true, then the code block corresponding to that con-
dition is executed, and when it is finished, execution resumes at the statement
following the if statement. If none of the conditions are true and there is an
else part, the code block in the else part is executed. If there is no else part,
execution is simply resumed at the next statement.

Figure 5 shows some valid if statements.

4.2 The Assignment Statement

An assignment statement is simply an identifier or a reference to an array el-
ement followed by := and an expression. Assignments to entire arrays are not

Figure 4 Structure of an if statement.

if condition then
then part;

elseif condition then
elseif part;

elseif condition then
elseif part;

else
else part;

end if;

Figure 5 Examples of valid if statements.

if x == 1 then if x > y then
begin begin
y = 3; out := 1;
end if; end
elseif x < y
if x == 1 then begin
begin out := -1;
result := a; end
end else
elseif x == 2 then begin
begin out := 0;
result := b; end if;
end if;

allowed, nor are assignments to functions.

The result of the expression is converted as necessary. If it is an integer, it
may be converted to a real; if it is a real, it may be truncated.

Figure 6 shows some valid assignments.

Figure 6 Examples of assignment statements.

x := 3;
x :=2 - (x * 2);
x := fac(y);

4.3 The Function Call

A function call consists of an identifier, followed by a left parenthesis, a comma-
separated list of expressions and a right parenthesis. When used as a statement,
the result of the function call is simply discarded.

Figure 7 contains some valid function call statements.

Figure 7 Examples of function call statements.

ackerman(2,3);
fac(4);
initialize();

4.4 The Return Statement

A return statement consists of the keyword return followed by an expression.

The return statement causes the currently executing function to return the
value of the expression. Calling return from the body of the main program, or
with the wrong data type, is an error.

4.5 The While Statement

A while statement consists of the keyword while, followed by a condition, the
keyword do, a code block and finally the keyword while. Figure 8 shows the
structure of a while statement.

While loops are the only kind of loop in the language. The loop body is
executed until the condition is false at the beginning of the loop body. The
condition is also tested before entering the loop for the first time.

Figure 9 shows some valid while statements.

5 Types

There are only two predefined types, integer and real. Integers are signed
32-bit integer quantities. Reals are double-precision floating point numbers.

Figure 8 Structure of the while statement.

while condition do
begin

Loop body;
end while;

Figure 9 Examples of valid while statements.

x :=1;

while x < 10 do

begin
y := y + calculate(x)
X :=x + 1;

end while;

while x == 1 and x < 5 do
begin
x := random();

end while;

It is possible to construct arrays from integers and reals. The syntax for an
array is array size of type, where size is the number of elements in the array
(an integer constant) and type is the element type (either integer or real.)

6 Identifiers

An identifier is an arbitrarily long string of characters. The first character must
be a letter. Any subsequent characters must be letters, digits or underscores.
Here are some valid identifiers: tmp, g 04, integer_constant.

7 Numeric Constants

There are two kinds of numeric constants. An integer constant consists of a
string of digits. A real constant consists of a string of digits, a decimal point, a
string of digits and an optional exponent. There must be at least one digit on
one side of the decimal point. The optional exponent consists of the letter ‘E’
an optional sign and an integer. A real constant can also be a string of digits
followed by an exponent.

Here are some valid integers: 123, 4711, 17

Here are some valid reals: .12, 1.2, 3., 1.2E-3, .3E44, 12E5

8 Array References

An array reference consists of an identifier, a left square bracket, an expression
and a right square bracket. Array elements are numbered from 0 and up, so
a[0] is the first element in the array a and a[1] is the second element.

The expression used as the index must return an integer.

9 Expressions

Expressions are used on the right-hand side of assignments, as the index in array
references. Expressions may contain the following binary operators:

x © y The result is x raised to the power of y.

- x The result is the unary negation of x.

x * y The result is the multiplication of x and y.
x / y The result is x divided by y.

x + y The result is x plus y.

x - y The result is x minus y.

If all operands are of the same type, then the result will also be of that type.
This means that division of two integers will produce a truncated value. If one
of the operands is an integer and the other is a real, then the integer must be
converted to a real before executing the operations. Arrays are not permitted
in expressions, although references to array elements are.

The precedence levels (highest first) and associativity of the operators are:

~

Right-associative
- | (unary minus)

*, / | Left-associative

+, — | Left-associative

Parentheses may be used in the conventional manner to force the order of
evaluation.

Expressions may also contain numeric constants, variables, array references
and function calls.

10 Conditions

Conditions consits of binary relations and logical operators. The following op-
erators exist (both x and y are expressions):

z >=1y True if x is greater than or equal to y.
z <=1y True if x is less than or equal to y.
x >y True if x is greater than y.

z < y True if x is less than y.

z ==y True if x is equal to y.

x <>y True if x is not equal to y.

The logical operators are

a and b True if a and b are both true.

a or b True if one or both of a and b are true.

not ¢ True if ¢ is not true.

Parenteses may be used within conditions in the same way as in expressions.
The binary relations have higher precedence than the logical operators, so a
== b and ¢ < dis the same as (a == b) and (¢ == d). Among the logical
operators, not has higher precedence than and, which has higher precedence
than or. Finally, the constants true and false are allowed as conditions.

