#!/bin/bash MODULE_NAME=nnunet_for_pytorch MODULE_VERSION=21.11.0 WORK_DIR=/proj/nsc_testing/xuan/berzelius-benchmarks/PyTorch/Segmentation/nnUNet CONTAINER_DIR=/proj/nsc_testing/xuan/containers/${MODULE_NAME}_${MODULE_VERSION}.sif SBATCH_DIR=$WORK_DIR/sbatch_scripts/benchmark_${6}_${5}_dim${1}_nodes${2}_gpus${3}_batchsize_${4}.sbatch SBATCH_OUT_DIR=$WORK_DIR/sbatch_out/benchmark_${6}_${5}_dim${1}_nodes${2}_gpus${3}_batchsize_${4}.out LOG_DIR=benchmark_${6}_${5}_dim${1}_nodes${2}_gpus${3}_batchsize_${4}_amp.json mkdir -p $WORK_DIR/sbatch_out $WORK_DIR/sbatch_scripts cat <<EOT > $SBATCH_DIR #!/bin/bash #SBATCH -A nsc #SBATCH --nodes=${2} #SBATCH --gpus=${3} #SBATCH --time=0-0:10:00 #SBATCH --output=$SBATCH_OUT_DIR EOT if [ "${6}" = "thin" ]; then cat <<EOT >> $SBATCH_DIR #SBATCH -C "thin" #SBATCH --reservation=nodeimage EOT else cat <<EOT >> $SBATCH_DIR #SBATCH -C "fat" EOT fi cat <<EOT >> $SBATCH_DIR rm -f $WORK_DIR/results/$LOG_DIR apptainer exec --nv -B ${WORK_DIR}/data:/data -B ${WORK_DIR}/results:/results --pwd /workspace/nnunet_pyt $CONTAINER_DIR python scripts/benchmark.py --mode ${5} --gpus ${3} --dim ${1} --batch_size ${4} --amp --logname='$LOG_DIR' EOT