
How to get started with flutter

Background
Flutter is an open source UI software developing kit created by google. It is a perfect
framework for a new developer as well as for the more experienced. With flutter you can
create applications for platforms like ​Android​, ​iOS​, ​Linux​, ​Mac​, ​Windows​ and web browsers.

Now, let's get started.

Step 1: Installation
Various editors and developing tools can be used when creating your flutter app. In this
guide we are going to use Android studio, follow the ​link​ to install it if you don't already have
it installed.

Once installed we want to add a Flutter plugin. Start Android studio and open plugin
preferences (Preferences > Plugins on macOS, File > Settings > Plugins on Windows &
Linux).

1. Select Browse repositories, select the Flutter plugin and click Install.
2. Click Yes when prompted to install the Dart plugin.
3. Click Restart when it's installed.

Now when Android studio stars it should look something like this.

https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://developer.android.com/studio/install

Step 2: Create your Flutter app
Click on ​Create New Flutter Project ​to create your first flutter app. This creates all the files
you need to get started. Most of the implementation will be done in the file ./lib/main.dart. For
easier guidance remove all the code in main.dart and replace it with:

Now it's time to run your app to see so everything works. Open the tab tools > AVD Manager
and add a virtual device. Now you can choose your virtual device and run main.dart. It
should result in something like this depending on your device.

import​ ​'package:flutter/material.dart'​;

void​ main() => runApp(MyApp());

class​ ​MyApp​ ​extends​ ​StatelessWidget​ {
 ​@override
 Widget build(BuildContext context) {

 ​return​ MaterialApp(
 title: ​'Welcome to your first flutter application'​,
 home: Scaffold(

 appBar: AppBar(

 title: Text(​'Welcome to Flutter'​),
),

 body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Text(​"Hello im a text component in the column"​),
 Text(​"Hello im another text component in the column"​),
],

),

),

),

);

 }

}

Step 3: Explore flutter Widget
In this step we will explore the layout. If we look at the code in our lib/main.dart the class
MyApp extends a Stateless widget. A Stateless widget has final properties meaning that no
values can change. Flutter also provides a Stateful widget where the properties can change
during its lifetime, let's explore that.

For a quick Stateful boilerplate code place your cursor at the end of all the code and type
stfull. The editor will ask if you would like to add a Stateful widget, follow the editor
instructions to add the boilerplate. Give your stateful class a name, in this example we will
call it MyFirstPage. Add a child in the container of your new class and add a Text(). Now add
your new class to MyApp and remove both of the Text components like in the code below:

class​ ​MyApp​ ​extends​ ​StatelessWidget​ {
 ​@override
 Widget build(BuildContext context) {

 ​return
 MaterialApp(

 title: ​'Welcome to your first flutter application'​,
 home: Scaffold(

 appBar: AppBar(

 title: Text(​'Welcome to Flutter'​),
),

 body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 MyFirstPage(),

 Text(​"Hello im a text component in the column"​),
 Text(​"Hello im another text component in the column"​),
],

),

),

),

);

 }

}

class​ ​MyFirstPage​ ​extends​ ​StatefulWidget​ {
 ​@override
 _​MyFirstPageState ​createState() => _​MyFirstPageState​();
}

class​ ​_MyFirstPage​ ​extends​ ​State​<​MyFirstPage​> {
 ​@override
 Widget build(BuildContext context) {

 ​return​ Container(
 child: Text(​"Hello"​),
);

 }

}

Now when you run the app you should only see the text “Hello”. Let's keep on creating. In
the next step we will add a button element that shows a text when pressed.

Step 4: Interaction and Callback-functions
For making your app more interactable it can be of good use to know how to handle
functions and callback functions. We will implement a simple button that when pressed calls
the setState function which will set a string state and show the text in the app. Look at the
code snippet below for inspiration on how it can be done.

class​ ​_MyFirstPageState​ ​extends​ ​State​<​MyFirstPage​> {
 ​String​ myTitle = ​""​;

 ​@override
 Widget build(BuildContext context) {

 ​return​ Column(
 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 Text(myTitle),

 Padding(padding: EdgeInsets.all(​15​)),
 FloatingActionButton.extended(

 onPressed: ((){setState(() {

 myTitle = ​"You pressed the button"​;
 });}),

 label: Text(​"Click me"​)
),

],

);

 }

}

Step 5: Navigation
As your app is growing it might be time to create more than one single page. Say that
instead of showing a text when you click the button you want to get navigated to the next
page. For navigation between pages Flutter has a widget called Navigation. With the method
.push you can add a Route to the stack of routes managed by the Navigation widget. With
the help of the method .pop you can in the same way remove a Route from the stack.

In the example below we implement a new class called NextPage and replace the old code
in the onPressed function with a Navigation.push which routes us to the class NextPage. To
navigate back we add a .pop to the onPressed function in our class NextPage.

class​ ​_MyFirstPageState​ ​extends​ ​State​<​MyFirstPage​> {
 ​@override
 Widget build(BuildContext context) {

 ​return​ Column(
 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 FloatingActionButton.extended(

 onPressed: ()

 {Navigator.push(

 context, MaterialPageRoute(builder: (context) => NextPage()),

);},

 label: Text(​"Navigate to next page"​)
),

],

);

 }

}

class​ ​_NextPageState​ ​extends​ ​State​<​NextPage​> {
 ​@override
 Widget build(BuildContext context) {

 ​return​ Scaffold(
 appBar: AppBar(

 title: Text(​'Next page'​),
),

 body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Column(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 FloatingActionButton.extended(

 onPressed: ()

 {

 Navigator.pop(context);

 },

 label: Text(​"Go back"​),
),

],

)

],

),

We hope this helped you to get started with Flutter and building your first Flutter app.

),

);

 }

}

