Dynamic Optimization as a Tool for Motion Planning and Control

TSFS12: Autonomous Vehicles – Planning, Control, and Learning Systems

Lecture 5: Björn Olofsson <bjorn.olofoisson@liu.se>
Purpose of this Lecture

• Give a background on dynamic optimization, particularly with respect to applications in motion planning and control and the main ideas of the methods used:
 • motivation and challenges,
 • fundamental concepts and methods,
 • application examples.
• Demonstrate a case-study for optimization of motion primitives.
 • Connected to hand-in assignment 2.
Expected Take-Aways from this Lecture

• Be familiar with **basic concepts in optimization** and **common methods for numerical optimal control** for systems described by continuous-time dynamic models.

 • Not expected to get insights into all details of the treated methods, primarily on a **general level** for understanding of their **applicability**.

• Have knowledge about **different applications of dynamic optimization** for **motion planning and control** for **autonomous vehicles**.
Literature Reading

The following book and article sections are the main reading material for this lecture. References to further reading are provided throughout the slides and at the end of the lecture slides.

Outline of the Lecture

• **Introduction** to dynamic optimization and application examples.
• **Methods and concepts** for solving continuous-time optimal control problems using numerical methods.
• **Case study**: computation of optimal motion primitives.
Dynamic optimization is possible to apply at all layers in the architecture for different tasks (with varying constraints on real-time computational cost).
Introduction to Dynamic Optimization and Application Examples
Recall Motion-Planning Problem from Lecture 4

- Compute a strategy for transferring a vehicle from an initial state to another desired state.
- Constraints on control inputs and states, as well as a performance criterion to be fulfilled.
Dynamic Optimization – Examples (1/3)

• Vehicle maneuvers at-the-limit of tire friction for development of future safety systems for autonomous vehicles.
• Traverse the hairpin turn in as short time as possible.
• The plot shows results for different vehicle models.

Dynamic Optimization – Examples (2/3)

- Perform an **avoidance maneuver**, while spending as short time as possible in the opposing driving lane.
- **Single-track vehicle model** combined with **tire–road friction model**.

\[
m(\dot{v}_x - v_y \dot{\psi}) = F_{x,f} \cos(\delta) + F_{x,r} - F_{y,f} \sin(\delta)
\]
\[
m(\dot{v}_y + v_x \dot{\psi}) = F_{y,f} \cos(\delta) + F_{y,r} + F_{x,f} \sin(\delta)
\]
\[
I_Z \ddot{\psi} = l_f F_{y,f} \cos(\delta) - l_r F_{y,r} + l_f F_{x,f} \sin(\delta)
\]
Dynamic Optimization – Examples (3/3)

- Perform an **avoidance maneuver**, while spending as short time as possible in the opposing driving lane.

- **Vary the initial velocity** and the **geometry of the obstacle** and study the resulting **optimal vehicle maneuvers**.

Dynamic Optimization – Background (1/2)

• Finding solutions to optimization problems involving system dynamics (e.g., the motion equations of an autonomous vehicle).

• Optimal control for finding input signals and state trajectories for optimizing a performance criterion, while fulfilling model dynamics and often also other requirements.

• Sometimes also unknown parameters to be found.

• The methods in this lecture are important for model predictive control (MPC) (see Lecture 7).

• Moving-horizon estimation (MHE) (dual problem to MPC).
Dynamic Optimization – Background (2/2)

• In this lecture the focus is on numerical methods for dynamic optimization, since many real-world problems are intractable with analytical methods.

• **Independent variable** considered in this lecture is time t, but also other variables like distance possible.

• Examples:
 • **Motion planning for autonomous vehicles and robots,**
 • Optimal battery-charging planning for autonomous electric vehicles,
 • Efficient electric motor and engine control,
 • Traffic-flow optimization in city environments.
• The motion equations to be considered are described by differential equations for the states in continuous time (or difference equations in discrete time), see Lecture 3.

• Possibly also algebraic variables and associated algebraic equations.
System Dynamics (2/2)

- Explicit ordinary differential equation (ODE) system:

 \[\dot{x} = f(t, x, u) \]

 - \(t \) – time
 - \(x \) – states
 - \(u \) – inputs

- Differential-algebraic equation (DAE) system, fully implicit to the left and semi-explicit form to the right:

 \[
 F(t, \dot{x}, x, z, u) = 0, \quad \dot{x} = F(t, x, z, u), \quad G(t, x, z, u) = 0
 \]

 - \(t \) – time
 - \(x \) – states
 - \(z \) – algebraic variables
 - \(u \) – inputs
Objective Function

• The function to be optimized (i.e., minimized or maximized) is referred to as the **objective function**.

• Also known as **cost function**, if to be minimized.

• If objective function independent of optimization variables: **feasibility problem**.

• Can involve optimization variables at any time point in the considered interval \([0, T]\), e.g., **integral of quadratic function** and **penalty on terminal states** (at time \(T\)).
Constraints

• In addition to the motion equations, there are often several other limitations or requirements to consider.

• Mathematically described by equalities or inequalities.

• Examples:
 • Limits on control signals, such as maximum acceleration.
 • Geometric constraints for vehicle obstacle avoidance.
 • Physical constraints on internal states and other variables, such as maximum power from motor.
A First Optimization Example (1/3)

• Assume an **autonomous car** that should move from point A to point B, driving along a straight road.
• Perform this task in as **short time as possible**.
• The quantity that we can control on the car is the **acceleration**.
• Limitations on **maximum acceleration and maximum velocity** of the car.
A First Optimization Example (2/3)

- **Mathematical formulation** of the motion-planning problem for the autonomous car over time horizon $[0, T]$:

 \[
 \begin{align*}
 \text{minimize} & \quad T \\
 \text{subject to} & \quad \dot{p} = v, \quad \dot{v} = a, \\
 & \quad p(0) = 0, \quad v(0) = 0, \\
 & \quad p(T) = 100, \quad v(T) = 5, \\
 & \quad a_{\text{min}} \leq a \leq a_{\text{max}}, \\
 & \quad v_{\text{min}} \leq v \leq v_{\text{max}}
 \end{align*}
 \]

- Identification of variables leads to the expressions:

 \[x = (p \ v)^T, \ u = a, \ f = (v \ u)^T\]
A First Optimization Example (3/3)

- Resulting **trajectories** for the car position, velocity, and acceleration.

\[p(0) = 0, \quad p(T) = 100 \text{ m}, \]
\[v(0) = 0, \quad v(T) = 5 \text{ m/s}, \]
\[v_{\text{min}} = -10 \text{ m/s}, \]
\[v_{\text{max}} = 10 \text{ m/s}, \]
\[a_{\text{min}} = -3 \text{ m/s}^2, \]
\[a_{\text{max}} = 3 \text{ m/s}^2 \]
Mathematical Formulation

- **Optimization problem** over time horizon \([0, T]\), where \(T\) possibly is a free optimization variable:

\[
\text{minimize} \quad \int_{0}^{T} L(x(t), u(t)) \, dt + \Gamma(x(T))
\]

subject to

\[
x(0) = x_0, \quad \dot{x}(t) = f(t, x(t), u(t)),
\]

\[
x(t) \in \mathbb{X}, \quad u(t) \in \mathbb{U}, \quad x(T) \in \mathbb{X}_T, \quad t \in [0, T]
\]

- Minimization of **terminal time** can be formulated:

\[
T = \int_{0}^{T} 1 \, dt
\]
Challenges and Solution Strategies for Dynamic Optimization
Challenges (1/2)

• Objective function with equality and inequality constraints.

• Optimization algorithm often finds loopholes in model.

• Continuous-time dynamics (infinite dimensional).

• Often non-linear and non-convex problems in applications.

"In constrained as well as in unconstrained minimization, convexity is a watershed concept. The distinction between problems of ‘convex’ and ‘nonconvex’ type is much more significant in optimization than that between problems of ‘linear’ and ‘nonlinear’ type." – R. T. Rockafellar, Fundamentals of Optimization, Univ. of Washington, Seattle.

• Local and global optima of the optimization problem.

Challenges (2/2)

• **Convex optimization problem** (convex feasible set and convex objective function): a *local minimum is also a global minimum*.

• **Non-convex optimization problem**: can be challenging to even find one local optimum, and no information about objective value at possible other local optima.

• **How to find local minima?**
 • Recall from previous courses in calculus that *local optima* of a function can be found using the derivative.
 • Here we mainly consider iterations based on *Newton’s method* and *optimality conditions*.
 • How to numerically compute required *derivatives* of involved functions with sufficient accuracy?

Solution Strategies – Overview

Continuous-Time Dynamic Optimization Problem

- Dynamic Programming based on HJB Equation
- Indirect Methods based on Pontryagin’s Maximum Principle
- Direct Methods for transformation to a large NLP
 - Single Shooting
 - Multiple Shooting
 - Collocation

Numerical Solution of an Optimal Control Problem

• Two major approaches to discretization related to optimization problems:
 • Discretize the control inputs and reformulate optimization problem in initial state and control inputs (sequential).
 • Discretize both control inputs and states and keep all variables in the optimization (simultaneous).

Direct Methods for Dynamic Optimization
Direct Methods – The Overall Idea

minimize $\int_{0}^{T} L(x(t), u(t)) \, dt + \Gamma(x(T))$
subject to $x(0) = x_0$, $\dot{x}(t) = f(t, x(t), u(t))$,
$x(t) \in X$, $u(t) \in U$, $x(T) \in X_T$, $t \in [0, T]$

Discretization

minimize $f(x)$
subject to $g(x) = 0$,
$h(x) \leq 0$

Infinite-dimensional optimal control problem

Optimization problem with a finite set of variables, a non-linear program
Direct Methods

- **First discretize** the optimization problem, **then optimize** to find an **approximate solution** to the original continuous-time optimization problem.

- Transform the infinite-dimensional optimization problem to a finite-dimensional **non-linear program** (NLP) by discretization of the control inputs and possibly states.

- Then solve the (typically large) NLP, utilizing sparsity.

- Focus on **direct simultaneous methods** in this lecture (well-proven track record in many applications).
Direct Single Shooting (1/2)

- Basic idea of single shooting:
 - **Discretize control inputs** (piecewise constant in the figure to the right).
 - Start with an initial guess of control inputs and **integrate dynamics forward** in time with these inputs.
 - Iteratively **update control inputs** and re-simulate dynamics forward.

Direct Single Shooting (2/2)

- **Sequential** approach that optimizes over the control parameters (typically assuming piecewise constant control).
- One of the most straightforward methods to implement, though **challenging with unstable system dynamics** and handling of state constraints.

Direct Multiple Shooting (1/2)

- Extension of single shooting:
 - Divide the time horizon into elements and apply single shooting in each element.
 - Add continuity constraints (equality) at the element junctions for the states.
 - A hybrid between sequential and simultaneous approach.

Direct Multiple Shooting (2/2)

- **Explicit Runge-Kutta** (RK) methods common for the integration of the states in each element.
- The division into elements implies better **numerical accuracy** (especially for unstable system dynamics).
- Allows **initialization** of state trajectories and easier handling of **path constraints**.
- **Sparsity** in the Jacobian and Hessian matrices corresponding to the resulting NLP.

Direct Simultaneous Collocation (1/4)

• Consider an explicit ODE:
 \[\dot{x} = f(t, x) \]

• Numerical integration with explicit or implicit Runge-Kutta methods (with step size \(h \) and parameters \(a, b, c \)).

• Implicit methods imply (nonlinear) equation solving.

\[x_{n+1} = x_n + h \sum_{i=1}^{s} b_i k_i, \]

\[k_1 = f(t_n, x_n), \]
\[k_2 = f(t_n + c_2 h, x_n + h(a_2 k_1)), \]
\[\vdots \]
\[k_s = f(t_n + c_s h, x_n + h(a_s, 1 k_1 + \ldots + a_s, s-1 k_{s-1})) \]

\[x_{n+1} = x_n + h \sum_{i=1}^{s} b_i k_i, \]

Explicit

\[k_1 = f(t_n + c_1 h, x_n + h(a_1, 1 k_1 + \ldots + a_1, s k_s)), \]
\[k_2 = f(t_n + c_2 h, x_n + h(a_2, 1 k_1 + \ldots + a_2, s k_s)), \]
\[\vdots \]
\[k_s = f(t_n + c_s h, x_n + h(a_s, 1 k_1 + \ldots + a_s, s k_s)) \]

Implicit
Direct Simultaneous Collocation (2/4)

• As in multiple shooting, divide the time horizon into elements.
• **Discretize both state and input trajectories** and include numerical integration conditions as equality constraints in the optimization (**collocation equations**), often using implicit integration methods.
• Define a number of **collocation points** within each element.
Direct Simultaneous Collocation (3/4)

• Represent state variables within each element using Lagrange interpolation polynomials (piecewise polynomials over the time horizon) of order N_c.

• Collocation polynomials for state derivatives obtained by differentiating Lagrange polynomials for the state variables.

• Add state-boundary constraints at the element junctions for continuity.
Direct Simultaneous Collocation (4/4)

• Choice of collocation points within each element leads to different versions of *implicit Runge-Kutta methods* (nonlinear equation system):

 • **Gauss-Legendre** – collocation points chosen as zeros of orthogonal Legendre polynomials, strictly in interior of element and symmetric around midpoint of element.

 • **Radau** – always includes the end point of the element, provides so called stiff decay and exhibits good numerical stability in many applications.

 • **Lobatto** – always includes the initial point and the end point of the element as collocation points.

• Variant of direct collocation: **pseudo-spectral methods** where only one element over the entire time horizon \([0, T]\), but high-order polynomials for the interpolation polynomials (i.e., many collocations points).
Collocation – Example (1/2)

- Approximate the state trajectories with **piecewise third-order polynomials** and collocation points using **Radau scheme**.
- Points distributed in the normalized interval $[0, 1]$:
 \[
 \tau = \begin{pmatrix} 0 & 0.1551 & 0.6449 & 1 \end{pmatrix}
 \]
- Introduce a uniform width of each element
 \[
 t_k = k h, \quad k = 0, \ldots, N
 \]
- Collocation points illustrated graphically (non-uniform!)

\[t_k,0 \quad t_k,1 \quad t_k,2 \quad t_k,3 \quad t_{k+1,0}\]
Collocation – Example (2/2)

• Within each element, Lagrange polynomials basis are used to interpolate the values at the collocation points

\[L_i(\tau) = \prod_{j=0, j \neq i}^{3} \frac{\tau - \tau_j}{\tau_i - \tau_j} \]

• The state trajectory is then approximated as

\[x_\ell(t) = \sum_{i=0}^{3} L_i \left(\frac{t - t_k}{h} \right) x_{k,i}, \quad t \in [t_k, t_{k+1}] \]

• Differentiation with respect to time gives

\[\dot{x}_\ell(t_{k,j}) = \frac{1}{h} \sum_{i=0}^{3} \hat{L}_i(\tau_j) x_{k,i} \]
Solution of the Resulting Non-Linear Program
Non-Linear Program (NLP)

• The direct methods for discretization result in a (typically large) **non-linear program** (NLP) on the format:

 \[
 \text{minimize} \quad f(x) \\
 \text{subject to} \quad g(x) = 0, \quad h(x) \leq 0
 \]

• This NLP can be solved using various methods, e.g., **interior point** (IP) and **sequential quadratic programming** (SQP).

Background: Newton’s Method (1/2)

- **Iterative method** for finding the roots of a function F, i.e., an x such that $F(x) = 0$, based on a starting point x_0.
- **Iteratively linearize** the function around the current value x_k and subsequently update value to x_{k+1}.
Background: Newton’s Method (2/2)

- **Iteratively linearize** the function F around the current x using the Jacobian J and take a **step in the computed direction** (here assuming a square Jacobian matrix):

 $$F(x_k) + J(x_k)(x - x_k) = 0,$$

 where $J(x_k) = \frac{\partial F}{\partial x}(x_k)$

 $$\Rightarrow \quad x_{k+1} = x_k - J(x_k)^{-1}F(x_k)$$

- New step computed by solving the **linear equation system**:

 $$J(x_k)\Delta x = -F(x_k), \quad \text{where } \Delta x = x_{k+1} - x_k$$

- Can be used for finding **local optimum** for optimization problem – **initialization strategies** for variables important.
Newton’s Method – Example

• An example for finding the roots $F(x) = 0$. Note the dependence on the starting value of x.

$$F(x) = 10 \sin(x) - x^3, \quad F'(x) = 10 \cos(x) - 3x^2$$

$x_0 = -1.4$

$x_0 = 0.8$

$x_0 = 1.4$
Automatic Differentiation – AD

• Structured way of computing derivatives with machine precision.
• Chain rule for differentiation used to decompose the problem into smaller elementary operations.
• Provides Jacobians (first-order derivatives) and Hessians (second-order derivatives) for solution of the NLP using Newton-based methods.
• Forward or backward mode can give very different performance.
 • Forward mode when #inputs \ll #outputs.
 • Backward mode when #inputs \gg #outputs.
• Example: backpropagation in training of neural networks.

Automatic Differentiation – Example

- Compute gradient of F using AD in forward mode:
 \[F(x_1, x_2) = \cos(x_1) + x_1 x_2 \]

- Decompose into elementary operations:
 \[
 \begin{align*}
 x_3 &= x_1 x_2, & \dot{x}_3 &= \dot{x}_1 x_2 + x_1 \dot{x}_2, \\
 x_4 &= \cos(x_1), & \dot{x}_4 &= -\sin(x_1) \dot{x}_1, \\
 x_5 &= x_3 + x_4 & \dot{x}_5 &= \dot{x}_3 + \dot{x}_4
 \end{align*}
 \]

- The final row in the right column is the desired derivative. Performing these computations twice for the so called seeds
 \[
 \dot{x}_1 = 1, \quad \dot{x}_2 = 0 \text{ resp. } \dot{x}_1 = 0, \quad \dot{x}_2 = 1
 \]
 gives the desired gradient. Only one sweep using backward mode AD.
Optimality Conditions

• Introduce the **Lagrangian function**:

\[\mathcal{L}(x, \lambda, \nu) = f(x) + \lambda^T g(x) + \nu^T h(x) \]

• **First-order optimality conditions**, given certain technical conditions on the constraints (constraint qualification), by Karush, Kuhn, and Tucker (KKT):

\[
\begin{align*}
\nabla_x \mathcal{L}(x^*, \lambda^*, \nu^*) &= 0, & \text{Stationarity} \\
g(x^*) &= 0, & \text{Feasibility} \\
h(x^*) &\leq 0, & \text{Complementarity} \\
\nu^* &\geq 0, & \\
\nu_i^* h_i(x^*) &= 0, \quad i = 1, \ldots, n_h & \\
\end{align*}
\]
Solution of NLP (1/2)

- For **equality-constrained NLPs** (i.e., $h(x) = 0$), the KKT conditions give a nonlinear system of equations to be solved:

\[
\begin{pmatrix}
\nabla_x \mathcal{L}(x, \lambda)
g(x)
\end{pmatrix} = 0
\]

- Apply **Newton’s method** with variables and function:

\[
\tilde{x} = \begin{pmatrix} x \\ \lambda \end{pmatrix}, \quad F(\tilde{x}) = \begin{pmatrix} \nabla_x \mathcal{L}(x, \lambda) \\ g(x) \end{pmatrix}
\]
Solution of NLP (2/2)

• Application of Newton’s method for the case \(h(x) = 0 \) gives the iterations as the solution of the linear equation system:

\[
\begin{pmatrix}
\nabla_x \mathcal{L}(x_k, \lambda_k) \\
g(x_k)
\end{pmatrix}
+ \begin{pmatrix}
\nabla^2_x \mathcal{L}(x_k, \lambda_k) & \nabla g(x_k) \\
\nabla g(x_k)^T & 0
\end{pmatrix}
\begin{pmatrix}
\Delta x \\
\Delta \lambda
\end{pmatrix} = 0
\]

• Requires the Hessian of the Lagrangian function.

• Partial Newton step with line-search or trust-region strategies to ensure intended decrease of specified measure.

• Quasi-Newton methods with approximate Hessian exist (of which BFGS is one of the most common).

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g(x) = 0, \\
& \quad h(x) \leq 0
\end{align*}
\]

Example: Logarithmic Barrier Function

- Consider the following **approximation** of a **barrier function**:

 \[-\mu \log(-u)\]

- The approximation of the barrier improves for **decreasing values** of the parameter \(\mu\).
Interior-Point Methods (1/2)

- Consider equality and inequality-constrained NLP problems.
- Interior-point methods with barrier functions for inequalities – move inequality constraints to objective function with barrier function and positive parameter μ:

$$\begin{align*}
\text{minimize} & \quad f(x) - \mu \sum_{i=1}^{n_h} \log(-h_i(x)) \\
\text{subject to} & \quad g(x) = 0
\end{align*}$$

- Could then be solved as an equality-constrained problem, but often Lagrange variables for inequalities kept for numerical stability as shown on next slide.
Interior-Point Methods (2/2)

- Log-barrier approach corresponds to a smooth approximation of the KKT system:

\[
\nabla_x \mathcal{L}(x^*, \lambda^*, \nu^*) = 0,
\]

\[
g(x^*) = 0,
\]

\[
\nu_i^* h_i(x^*) = -\mu, \; i = 1, \ldots, n_h
\]

- Primal-dual variant of IP method solves the above KKT system for decreasing values of barrier parameter \(\mu \), while ensuring that the inequalities \(\nu > 0, \; h(x) < 0 \) hold during the iterations.

- IPOPT is a state-of-the-art implementation of such kind of NLP solver.

\[
\begin{align*}
\text{minimize} & \quad f(x) - \mu \sum_{i=1}^{n_h} \log(-h_i(x)) \\
\text{subject to} & \quad g(x) = 0
\end{align*}
\]
Sequential Quadratic Programming

• Alternative to IP methods: **Sequential quadratic programming (SQP)**.

• **Iteratively** applies a linearization to the inequality constraints and the equality constraints around the current solution to obtain the quadratic program (QP):

\[
\begin{align*}
\text{minimize} & \quad \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 L(x_k, \lambda_k, \nu_k)(x - x_k) \\
\text{subject to} & \quad g(x_k) + \nabla g(x_k)^T (x - x_k) = 0, \\
& \quad h(x_k) + \nabla h(x_k)^T (x - x_k) \leq 0
\end{align*}
\]

• QP can be solved using **IP methods** or **active set methods**.

Case Study on Dynamic Optimization
Case Study: Optimization of Motion Primitives (1/5)

- **Optimization** can be used to compute the *motion primitives* from Lecture 4 (see also Hand-in Exercise 2).

- Vehicle motion equations given by:
 \[
 \begin{align*}
 \dot{x} &= v \cos(\theta), \\
 \dot{y} &= v \sin(\theta), \\
 \dot{\theta} &= v/L \tan(u)
 \end{align*}
 \]
Case Study: Optimization of Motion Primitives (2/5)

```matlab
% Compute the motion primitives using optimization with the tool CasADi
% using direct collocation for discretization of the continuous-time
% motion equations.

% Parameters for collocation
N = 75; % Number of elements
nx = 3; % Degree of state vector
Nc = 3; % Degree of interpolation polynomials

x_vec = lattice(1, :);
y_vec = lattice(2, :);
th_vec = lattice(3, :);

% Formulate the optimization problem for minimum path length using CasADi

import casadi.*

for i = 1:length(x_vec)
    % Use the opti interface in CasADi
    opti = casadi.Opti();
```
state_f = [x_vec(i) y_vec(i) th_vec(i)]';

% Define optimization variables and motion equations
x = MX.sym('x',nx);
u = MX.sym('u');

f = Function('f',{x, u}, {v*cos(x(3)), v*sin(x(3)), v*tan(u)/L});
X = opti.variable(nx,N+1);
pos_x = X(1,:);
pos_y = X(2,:);
ang_th = X(3,:);

U = opti.variable(N,1);
T = opti.variable(1);

% Set the element length (with final time T unknown, and thus an
% optimization variable)
dt = T/N;

% Set initial guess values of variables
opti.set_initial(T,0.1);
opti.set_initial(U,0.0*ones(N,1));
% Define collocation parameters
tau = collocation_points(Nc,'radau');
[C,~] = collocation_interpolators(tau);

% Formulate collocation constraints
for k = 1:N % Loop over elements
 Xc = opti.variable(nx,Nc);
 X_kc = [X(:,k) Xc];
 for j = 1:Nc
 % Make sure that the motion equations are satisfied at
 % all collocation points
 [f_1, f_2, f_3] = f(Xc(:,j),U(k));
 opti.subject_to(X_kc*C{j+1}' == dt*[f_1; f_2; f_3]);
 end
 % Continuity constraints for states between elements
 opti.subject_to(X_kc(:,Nc+1) == X(:,k+1));
end

% Input constraints
for k = 1:N
 opti.subject_to(-u_max <= U(k) <= u_max);
end

\[\dot{x}_k(t_{k,j}) = \frac{1}{h} \sum_{i=0}^{3} L_i(\tau_j) x_{k,i} \]
% Initial and terminal constraints
opti.subject_to(T >= 0.001);
opti.subject_to(X(:,1) == state_i);
opti.subject_to(X(:,end) == state_f);

% Formulate the cost function
alpha = 1e-2;
opti.minimize(T + alpha*sumsqr(U));

% Choose solver ipopt and solve the problem
opti.solver('ipopt',struct('expand',true),struct('tol',1e-8));
sol = opti.solve();

% Extract solution trajectories and store them in mprim variable
pos_x_opt = sol.value(pos_x);
pos_y_opt = sol.value(pos_y);
ang_th_opt = sol.value(ang_th);
u_opt = sol.value(U);
T_opt = sol.value(T);

mprim{i}.x = pos_x_opt;
mprim{i}.y = pos_y_opt;
mprim{i}.th = ang_th_opt;
mprim{i}.u = u_opt;
mprim{i}.T = T_opt;
mprim{i}.ds = T_opt*v;
end
References and Further Reading
References and Further Reading (1/2)

All the following books and articles are not part of the reading assignments for the course, but cover the topics studied during this lecture in more detail.

References and Further Reading (2/2)
