diff --git a/Neural graph module/ngm.ipynb b/Neural graph module/ngm.ipynb index a9d65ee24701f9458b591a0d099a587efc82f298..2bb5850f4f33da0ede889f42cf4fce1193047870 100644 --- a/Neural graph module/ngm.ipynb +++ b/Neural graph module/ngm.ipynb @@ -2,9 +2,18 @@ "cells": [ { "cell_type": "code", - "execution_count": 17, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "b:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], "source": [ "import datasets\n", "import torch\n", @@ -21,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -31,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -51,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -82,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -221,7 +230,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -244,7 +253,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -258,25 +267,31 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 2052/2052 [00:01<00:00, 1068.18it/s]\n" + "100%|██████████| 2052/2052 [00:00<00:00, 2085.36it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Finished with batches\n", - "features: ['[CLS] what ingredients are used in preparing the dish of ragout fin? [SEP] [ sub ] [SEP] ragout _ fin [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]'] mask: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0]]) label_index tensor(336)\n", - "valid features: tensor([[ 101, 2054, 2003, 1996, 2344, 1997, 2577, 10424, 2483, 11283,\n", - " 7570, 2906, 1029, 102, 1031, 4942, 1033, 102, 2577, 1035,\n", - " 10424, 2483, 11283, 1035, 7570, 2906, 102, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0]]) valid mask: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0]]) valid label_index tensor(297)\n" + "Finished with batches\n" + ] + }, + { + "ename": "ValueError", + "evalue": "'dbo:commander' is not in list", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mc:\\Users\\Albin\\Documents\\TDDE19\\codebase\\Neural graph module\\ngm.ipynb Cell 7\u001b[0m in \u001b[0;36m<cell line: 28>\u001b[1;34m()\u001b[0m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=25'>26</a>\u001b[0m train_dataloader \u001b[39m=\u001b[39m DataLoader(train_data, batch_size\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m, shuffle\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=26'>27</a>\u001b[0m \u001b[39m#show first entry\u001b[39;00m\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=27'>28</a>\u001b[0m train_features, train_mask, train_label, ents \u001b[39m=\u001b[39m \u001b[39mnext\u001b[39;49m(\u001b[39miter\u001b[39;49m(train_dataloader))\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=28'>29</a>\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39mfeatures:\u001b[39m\u001b[39m\"\u001b[39m, tokenizer\u001b[39m.\u001b[39mbatch_decode(train_features), \u001b[39m\"\u001b[39m\u001b[39mmask:\u001b[39m\u001b[39m\"\u001b[39m,train_mask,\u001b[39m\"\u001b[39m\u001b[39mlabel_index\u001b[39m\u001b[39m\"\u001b[39m, train_label[\u001b[39m0\u001b[39m])\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=31'>32</a>\u001b[0m valid_dataloader \u001b[39m=\u001b[39m DataLoader(valid_data, batch_size\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m, shuffle\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n", + "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\dataloader.py:681\u001b[0m, in \u001b[0;36m_BaseDataLoaderIter.__next__\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 678\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_sampler_iter \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 679\u001b[0m \u001b[39m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[39;00m\n\u001b[0;32m 680\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_reset() \u001b[39m# type: ignore[call-arg]\u001b[39;00m\n\u001b[1;32m--> 681\u001b[0m data \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_next_data()\n\u001b[0;32m 682\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_yielded \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m1\u001b[39m\n\u001b[0;32m 683\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_dataset_kind \u001b[39m==\u001b[39m _DatasetKind\u001b[39m.\u001b[39mIterable \u001b[39mand\u001b[39;00m \\\n\u001b[0;32m 684\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_IterableDataset_len_called \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m \\\n\u001b[0;32m 685\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_yielded \u001b[39m>\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_IterableDataset_len_called:\n", + "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\dataloader.py:721\u001b[0m, in \u001b[0;36m_SingleProcessDataLoaderIter._next_data\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 719\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_next_data\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[0;32m 720\u001b[0m index \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_next_index() \u001b[39m# may raise StopIteration\u001b[39;00m\n\u001b[1;32m--> 721\u001b[0m data \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_dataset_fetcher\u001b[39m.\u001b[39;49mfetch(index) \u001b[39m# may raise StopIteration\u001b[39;00m\n\u001b[0;32m 722\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_pin_memory:\n\u001b[0;32m 723\u001b[0m data \u001b[39m=\u001b[39m _utils\u001b[39m.\u001b[39mpin_memory\u001b[39m.\u001b[39mpin_memory(data, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_pin_memory_device)\n", + "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\_utils\\fetch.py:49\u001b[0m, in \u001b[0;36m_MapDatasetFetcher.fetch\u001b[1;34m(self, possibly_batched_index)\u001b[0m\n\u001b[0;32m 47\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mfetch\u001b[39m(\u001b[39mself\u001b[39m, possibly_batched_index):\n\u001b[0;32m 48\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mauto_collation:\n\u001b[1;32m---> 49\u001b[0m data \u001b[39m=\u001b[39m [\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset[idx] \u001b[39mfor\u001b[39;00m idx \u001b[39min\u001b[39;00m possibly_batched_index]\n\u001b[0;32m 50\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 51\u001b[0m data \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset[possibly_batched_index]\n", + "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\_utils\\fetch.py:49\u001b[0m, in \u001b[0;36m<listcomp>\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 47\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mfetch\u001b[39m(\u001b[39mself\u001b[39m, possibly_batched_index):\n\u001b[0;32m 48\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mauto_collation:\n\u001b[1;32m---> 49\u001b[0m data \u001b[39m=\u001b[39m [\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdataset[idx] \u001b[39mfor\u001b[39;00m idx \u001b[39min\u001b[39;00m possibly_batched_index]\n\u001b[0;32m 50\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 51\u001b[0m data \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset[possibly_batched_index]\n", + "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\dataset.py:290\u001b[0m, in \u001b[0;36mSubset.__getitem__\u001b[1;34m(self, idx)\u001b[0m\n\u001b[0;32m 288\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(idx, \u001b[39mlist\u001b[39m):\n\u001b[0;32m 289\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset[[\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindices[i] \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m idx]]\n\u001b[1;32m--> 290\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdataset[\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mindices[idx]]\n", + "\u001b[1;32mc:\\Users\\Albin\\Documents\\TDDE19\\codebase\\Neural graph module\\ngm.ipynb Cell 7\u001b[0m in \u001b[0;36mMyDataset.__getitem__\u001b[1;34m(self, idx)\u001b[0m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=13'>14</a>\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__getitem__\u001b[39m(\u001b[39mself\u001b[39m, idx):\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=14'>15</a>\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39minputs[idx], \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mattention_mask[idx], \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrelations\u001b[39m.\u001b[39;49mindex(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcorrect_rels[idx]), \u001b[39mself\u001b[39m\u001b[39m.\u001b[39ments[idx]\n", + "\u001b[1;31mValueError\u001b[0m: 'dbo:commander' is not in list" ] } ], @@ -289,12 +304,12 @@ " return json.load(f)\n", "\n", "\n", - "#relations = open_json(\"../data/relations-query-qald-9-linked.json\")\n", - "relations = open_json(\"../data/relations-all-no-http-lowercase.json\")\n", + "relations = open_json(\"../data/relations-all-lc-quad-no-http.json\")\n", + "#relations = open_json(\"../data/relations-all-no-http-lowercase.json\")\n", "\n", "# \"../data/qald-9-train-linked.json\"\n", "#pred = \"../LC-QuAD/combined-requeried-linked-train.json\"\n", - "inputs, attention_mask, correct_rels, sub_objs = make_batch(src=\"../LC-QuAD/combined-requeried-linked-train.json\", http_prefix = True) #train\n", + "inputs, attention_mask, correct_rels, sub_objs = make_batch(src=\"../data/lcquad-train.json\", http_prefix = True) #train\n", "\n", "# relations = open_json(\"../data/relations-lcquad-without-http-train-linked.json\")\n", "# train_set = MyDataset(*make_batch(), relations=relations)\n", @@ -319,16 +334,18 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight']\n", - "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + "ename": "NameError", + "evalue": "name 'NgmOne' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mc:\\Users\\Albin\\Documents\\TDDE19\\codebase\\Neural graph module\\ngm.ipynb Cell 8\u001b[0m in \u001b[0;36m<cell line: 13>\u001b[1;34m()\u001b[0m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m headers \u001b[39m=\u001b[39m {\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m \u001b[39m'\u001b[39m\u001b[39mAccept\u001b[39m\u001b[39m'\u001b[39m: \u001b[39m'\u001b[39m\u001b[39mapplication/sparql-results+json\u001b[39m\u001b[39m'\u001b[39m,\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=8'>9</a>\u001b[0m \u001b[39m'\u001b[39m\u001b[39mContent-Type\u001b[39m\u001b[39m'\u001b[39m: \u001b[39m'\u001b[39m\u001b[39mapplication/x-www-form-urlencoded\u001b[39m\u001b[39m'\u001b[39m,\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=9'>10</a>\u001b[0m }\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=11'>12</a>\u001b[0m \u001b[39m# Initialize model\u001b[39;00m\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=12'>13</a>\u001b[0m model \u001b[39m=\u001b[39m NgmOne(device, relations)\n", + "\u001b[1;31mNameError\u001b[0m: name 'NgmOne' is not defined" ] } ], @@ -350,7 +367,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -376,9 +393,9 @@ "optimizer = optim.Adam(model.parameters(), lr=0.001)\n", "#optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=0.5)\n", "\n", - "epoch = 10\n", + "epoch = 5\n", "batch_size = 8\n", - "alpha = 0.5\n", + "alpha = 0.8\n", "train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True)\n", "valid_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=True)\n", "\n", @@ -464,7 +481,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -641,7 +658,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.11 64-bit", + "display_name": "Python 3.10.4 ('tdde19')", "language": "python", "name": "python3" }, @@ -655,12 +672,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.11" + "version": "3.10.4" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "64e7cd3b4b88defe39dd61a4584920400d6beb2615ab2244e340c2e20eecdfe9" + "hash": "8e4aa0e1a1e15de86146661edda0b2884b54582522f7ff2b916774ba6b8accb1" } } }, diff --git a/data/relations-all-lc-quad-no-http-2.json b/data/relations-all-lc-quad-no-http-2.json new file mode 100644 index 0000000000000000000000000000000000000000..72112bd66c04a658e3a98b1b5642de6d30ea9fca --- /dev/null +++ b/data/relations-all-lc-quad-no-http-2.json @@ -0,0 +1,443 @@ +[ + "dbp:doctoraladvisor", + "dbp:editing", + "dbo:bronzemedalist", + "dbp:knownfor", + "dbp:creators", + "dbp:leadertitle", + "dbp:architect", + "dbp:designer", + "dbp:junction", + "dbo:producer", + "dbo:federalstate", + "dbo:militaryrank", + "dbo:nationality", + "dbo:associatedmusicalartist", + "dbo:architect", + "dbo:routestart", + "dbo:manager", + "dbp:managerclubs", + "dbo:architecturalstyle", + "dbp:buildingtype", + "dbo:cpu", + "dbo:ideology", + "dbp:engine", + "dbp:president", + "dbp:placeofbirth", + "dbp:draftteam", + "dbo:publisher", + "dbo:formerteam", + "dbo:network", + "dbo:rivermouth", + "dbo:family", + "dbo:river", + "dbo:composer", + "dbo:territory", + "dbo:stylisticorigin", + "dbp:label", + "dbp:founded", + "dbp:office", + "dbo:leader", + "dbp:nationalteam", + "dbo:associatedband", + "dbo:inflow", + "dbo:kingdom", + "dbp:university", + "dbp:firstteam", + "dbo:hometown", + "dbp:notableworks", + "dbo:writer", + "dbo:starring", + "dbp:editor", + "dbo:lyrics", + "dbo:veneratedin", + "dbp:deathdate", + "dbo:phylum", + "dbp:affiliation", + "dbp:owner", + "dbo:builder", + "dbo:director", + "dbp:album", + "dbp:starring", + "dbp:chancellor", + "dbp:company", + "dbp:maininterests", + "dbo:school", + "dbp:governingbody", + "dbp:narrated", + "dbp:recorded", + "dbo:artist", + "dbp:international", + "dbo:automobileplatform", + "dbp:deathplace", + "dbp:citizenship", + "dbp:domain", + "dbo:servingrailwayline", + "dbp:allegiance", + "dbo:colour", + "dbo:citizenship", + "dbp:operatingsystem", + "dbp:guests", + "dbo:binomialauthority", + "dbp:purpose", + "dbp:commander", + "dbo:mountainrange", + "dbp:employer", + "dbp:almamater", + "dbo:county", + "dbp:appointer", + "dbp:associatedacts", + "dbo:parentcompany", + "dbp:occupation", + "dbo:related", + "dbp:education", + "dbo:owningcompany", + "dbo:hubairport", + "dbp:programminglanguage", + "dbp:locationcountry", + "dbp:district", + "dbo:team", + "dbp:battles", + "dbp:keypeople", + "dbp:homestadium", + "dbp:playedfor", + "dbo:basedon", + "dbp:team", + "dbo:coach", + "dbp:club", + "dbp:awards", + "dbp:currentclub", + "dbp:currentmembers", + "dbo:genre", + "dbo:academicdiscipline", + "dbo:largestcity", + "dbp:stadium", + "dbo:president", + "dbo:voice", + "dbo:language", + "dbp:cities", + "dbo:illustrator", + "dbo:denomination", + "dbp:successor", + "dbo:cinematography", + "dbp:broadcastarea", + "dbo:album", + "dbp:music", + "dbp:jurisdiction", + "dbo:product", + "dbo:trainer", + "dbp:spouse", + "dbo:militarybranch", + "dbp:league", + "dbp:characters", + "dbp:commandstructure", + "dbo:board", + "dbo:otherparty", + "dbp:youthclubs", + "dbo:designer", + "dbo:assembly", + "dbo:stadium", + "dbo:relative", + "dbp:foundation", + "dbp:rank", + "dbp:deathcause", + "dbo:movement", + "dbo:silvermedalist", + "dbo:service", + "dbo:party", + "dbp:crosses", + "dbp:school", + "dbo:maintainedby", + "dbo:placeofburial", + "dbp:placeofburial", + "dbp:notableinstruments", + "dbp:design", + "dbp:order", + "dbo:author", + "dbo:militaryunit", + "dbp:branch", + "dbp:relatives", + "dbo:series", + "dbp:title", + "dbp:birthname", + "dbo:locatedinarea", + "dbo:neighboringmunicipality", + "dbo:opponent", + "dbo:targetairport", + "dbo:employer", + "dbp:province", + "dbp:place", + "dbo:musicby", + "dbo:poledriver", + "dbp:manufacturer", + "dbo:executiveproducer", + "dbp:director", + "dbo:university", + "dbp:fields", + "dbp:hometown", + "dbo:league", + "dbo:languagefamily", + "dbo:majorshrine", + "dbo:portrayer", + "dbo:distributor", + "dbo:recordedin", + "dbo:literarygenre", + "dbo:city", + "dbp:firstdriver", + "dbp:tenants", + "dbo:gender", + "dbp:format", + "dbp:writers", + "dbo:academicadvisor", + "dbo:knownfor", + "dbp:licensee", + "dbo:keyperson", + "dbp:nationality", + "dbp:neighboringmunicipalities", + "dbo:operatingsystem", + "dbp:arena", + "dbo:ethnicity", + "dbp:affiliations", + "dbp:ground", + "dbp:race", + "dbo:campus", + "dbo:breeder", + "dbo:affiliation", + "dbp:name", + "dbo:computingplatform", + "dbp:country", + "dbp:cinematography", + "dbo:headquarter", + "dbo:battle", + "dbp:largestcity", + "dbo:foundationplace", + "dbp:pastmembers", + "dbp:screenplay", + "dbo:programminglanguage", + "dbo:broadcastarea", + "dbo:founder", + "dbp:residence", + "dbp:partner", + "dbp:teamname", + "dbp:party", + "dbo:discoverer", + "dbo:foundedby", + "dbp:deputy", + "dbp:founder", + "dbp:mission", + "dbo:highschool", + "dbp:titles", + "dbo:previouswork", + "dbp:notablecommanders", + "dbp:locationtown", + "dbo:almamater", + "dbo:destination", + "dbo:debutteam", + "dbo:deathcause", + "dbp:animator", + "dbp:creator", + "dbo:governmenttype", + "dbo:education", + "dbo:award", + "dbp:veneratedin", + "dbp:genre", + "dbo:authority", + "dbp:hubs", + "dbo:garrison", + "dbp:coach", + "dbp:languages", + "dbp:flagbearer", + "dbp:sisternames", + "dbp:subject", + "dbo:college", + "dbo:subsequentwork", + "dbp:restingplace", + "dbp:position", + "dbo:sport", + "dbp:prizes", + "dbp:currency", + "dbo:owner", + "dbp:assembly", + "dbp:services", + "dbp:religiousaffiliation", + "dbo:homestadium", + "dbo:deathplace", + "dbo:order", + "dbo:birthplace", + "dbp:combatant", + "dbo:species", + "dbo:commandstructure", + "dbp:nationalorigin", + "dbo:field", + "dbp:parent", + "dbo:chairman", + "dbo:ingredient", + "dbp:officialname", + "dbp:leader", + "dbp:distributor", + "dbp:language", + "dbo:tenant", + "dbo:presenter", + "dbp:manager", + "dbo:training", + "dbo:sisterstation", + "dbp:carries", + "dbp:houses", + "dbo:editor", + "dbp:architecture", + "dbo:programmeformat", + "dbp:lieutenant", + "dbp:birthplace", + "dbo:creator", + "dbp:placeofdeath", + "dbp:role", + "dbo:license", + "dbo:type", + "dbo:editing", + "dbp:beatifiedby", + "dbp:borough", + "dbo:subsidiary", + "dbo:stateoforigin", + "dbp:majorshrine", + "dbp:author", + "dbo:country", + "dbp:birthdate", + "dbo:notablework", + "dbp:college", + "dbp:location", + "dbo:region", + "dbp:operator", + "dbp:workinstitutions", + "dbo:firstascentperson", + "dbp:predecessor", + "dbo:season", + "dbp:training", + "dbo:commander", + "dbo:ceremonialcounty", + "dbp:executiveproducer", + "dbo:athletics", + "dbo:occupation", + "dbo:mayor", + "dbo:spouse", + "dbp:children", + "dbp:type", + "dbp:firstaired", + "dbp:constituency", + "dbp:sisterstations", + "dbp:governor", + "dbo:managerclub", + "dbo:location", + "dbo:regionserved", + "dbp:primeminister", + "dbo:nearestcity", + "dbp:athletics", + "dbo:predecessor", + "dbp:lyrics", + "dbo:launchsite", + "dbo:capital", + "dbo:lieutenant", + "dbp:line", + "dbo:firstdriver", + "dbo:child", + "dbp:coverartist", + "dbp:address", + "dbp:discipline", + "dbp:developer", + "dbp:highschool", + "dbp:cityserved", + "dbo:successor", + "dbp:garrison", + "dbp:champion", + "dbp:artist", + "dbp:producer", + "dbp:state", + "dbo:formerbandmember", + "dbo:parentorganisation", + "dbo:profession", + "dbp:material", + "dbo:origin", + "dbp:poledriver", + "dbo:locationcity", + "dbp:mother", + "dbo:doctoraladvisor", + "dbp:city", + "dbo:institution", + "dbp:architecturalstyle", + "dbp:related", + "dbp:area", + "dbp:religion", + "dbp:region", + "dbo:layout", + "dbp:inflow", + "dbp:magazine", + "dbo:currency", + "dbp:writer", + "dbo:wineregion", + "dbp:pastteams", + "dbp:membership", + "dbo:nonfictionsubject", + "dbo:incumbent", + "dbp:venue", + "dbo:parent", + "dbo:countyseat", + "dbo:distributinglabel", + "dbp:headquarters", + "dbp:nickname", + "dbo:residence", + "dbo:timezone", + "dbp:destinations", + "dbo:mouthmountain", + "dbp:debutteam", + "dbo:anthem", + "dbo:jurisdiction", + "dbp:mascot", + "dbo:partner", + "dbp:doctoralstudents", + "dbo:primeminister", + "dbo:club", + "dbp:haircolor", + "dbo:instrument", + "dbp:thememusiccomposer", + "dbp:leadername", + "dbo:monarch", + "dbo:developer", + "dbp:os", + "dbp:meaning", + "dbo:operator", + "dbo:relation", + "dbp:archipelago", + "dbo:significantbuilding", + "dbo:narrator", + "dbo:formerpartner", + "dbo:doctoralstudent", + "dbo:ground", + "dbp:presenter", + "dbp:license", + "dbo:division", + "dbo:bandmember", + "dbp:schooltype", + "dbo:religion", + "dbp:field", + "dbp:origin", + "dbp:locationcity", + "dbp:agencyname", + "dbp:gender", + "dbp:owners", + "dbo:manufacturer", + "dbo:officiallanguage", + "dbo:honours", + "dbp:hostcity", + "dbp:products", + "dbo:race", + "dbp:canonizedby", + "dbo:routeend", + "dbp:nearestcity", + "dbp:mainingredient", + "dbo:outflow", + "dbo:restingplace", + "dbp:publisher", + "dbp:trainer", + "dbp:style", + "dbp:outflow", + "dbp:chairman" +]