diff --git a/Neural graph module/ngm.ipynb b/Neural graph module/ngm.ipynb
index a9d65ee24701f9458b591a0d099a587efc82f298..2bb5850f4f33da0ede889f42cf4fce1193047870 100644
--- a/Neural graph module/ngm.ipynb	
+++ b/Neural graph module/ngm.ipynb	
@@ -2,9 +2,18 @@
   "cells": [
     {
       "cell_type": "code",
-      "execution_count": 17,
+      "execution_count": 1,
       "metadata": {},
-      "outputs": [],
+      "outputs": [
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "b:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
+            "  from .autonotebook import tqdm as notebook_tqdm\n"
+          ]
+        }
+      ],
       "source": [
         "import datasets\n",
         "import torch\n",
@@ -21,7 +30,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 18,
+      "execution_count": 2,
       "metadata": {},
       "outputs": [],
       "source": [
@@ -31,7 +40,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 19,
+      "execution_count": 3,
       "metadata": {},
       "outputs": [
         {
@@ -51,7 +60,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 20,
+      "execution_count": 4,
       "metadata": {},
       "outputs": [],
       "source": [
@@ -82,7 +91,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 21,
+      "execution_count": 5,
       "metadata": {},
       "outputs": [],
       "source": [
@@ -221,7 +230,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 22,
+      "execution_count": 6,
       "metadata": {},
       "outputs": [],
       "source": [
@@ -244,7 +253,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 23,
+      "execution_count": 11,
       "metadata": {},
       "outputs": [
         {
@@ -258,25 +267,31 @@
           "name": "stderr",
           "output_type": "stream",
           "text": [
-            "100%|██████████| 2052/2052 [00:01<00:00, 1068.18it/s]\n"
+            "100%|██████████| 2052/2052 [00:00<00:00, 2085.36it/s]\n"
           ]
         },
         {
           "name": "stdout",
           "output_type": "stream",
           "text": [
-            "Finished with batches\n",
-            "features: ['[CLS] what ingredients are used in preparing the dish of ragout fin? [SEP] [ sub ] [SEP] ragout _ fin [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]'] mask: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
-            "         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
-            "         0, 0, 0, 0, 0, 0, 0, 0, 0]]) label_index tensor(336)\n",
-            "valid features: tensor([[  101,  2054,  2003,  1996,  2344,  1997,  2577, 10424,  2483, 11283,\n",
-            "          7570,  2906,  1029,   102,  1031,  4942,  1033,   102,  2577,  1035,\n",
-            "         10424,  2483, 11283,  1035,  7570,  2906,   102,     0,     0,     0,\n",
-            "             0,     0,     0,     0,     0,     0,     0,     0,     0,     0,\n",
-            "             0,     0,     0,     0,     0,     0,     0,     0,     0,     0,\n",
-            "             0,     0,     0,     0,     0,     0,     0]]) valid mask: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
-            "         1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
-            "         0, 0, 0, 0, 0, 0, 0, 0, 0]]) valid label_index tensor(297)\n"
+            "Finished with batches\n"
+          ]
+        },
+        {
+          "ename": "ValueError",
+          "evalue": "'dbo:commander' is not in list",
+          "output_type": "error",
+          "traceback": [
+            "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+            "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
+            "\u001b[1;32mc:\\Users\\Albin\\Documents\\TDDE19\\codebase\\Neural graph module\\ngm.ipynb Cell 7\u001b[0m in \u001b[0;36m<cell line: 28>\u001b[1;34m()\u001b[0m\n\u001b[0;32m     <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=25'>26</a>\u001b[0m train_dataloader \u001b[39m=\u001b[39m DataLoader(train_data, batch_size\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m, shuffle\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[0;32m     <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=26'>27</a>\u001b[0m \u001b[39m#show first entry\u001b[39;00m\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=27'>28</a>\u001b[0m train_features, train_mask, train_label, ents \u001b[39m=\u001b[39m \u001b[39mnext\u001b[39;49m(\u001b[39miter\u001b[39;49m(train_dataloader))\n\u001b[0;32m     <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=28'>29</a>\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39mfeatures:\u001b[39m\u001b[39m\"\u001b[39m, tokenizer\u001b[39m.\u001b[39mbatch_decode(train_features), \u001b[39m\"\u001b[39m\u001b[39mmask:\u001b[39m\u001b[39m\"\u001b[39m,train_mask,\u001b[39m\"\u001b[39m\u001b[39mlabel_index\u001b[39m\u001b[39m\"\u001b[39m, train_label[\u001b[39m0\u001b[39m])\n\u001b[0;32m     <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=31'>32</a>\u001b[0m valid_dataloader \u001b[39m=\u001b[39m DataLoader(valid_data, batch_size\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m, shuffle\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n",
+            "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\dataloader.py:681\u001b[0m, in \u001b[0;36m_BaseDataLoaderIter.__next__\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m    678\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_sampler_iter \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m    679\u001b[0m     \u001b[39m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[39;00m\n\u001b[0;32m    680\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_reset()  \u001b[39m# type: ignore[call-arg]\u001b[39;00m\n\u001b[1;32m--> 681\u001b[0m data \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_next_data()\n\u001b[0;32m    682\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_yielded \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m1\u001b[39m\n\u001b[0;32m    683\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_dataset_kind \u001b[39m==\u001b[39m _DatasetKind\u001b[39m.\u001b[39mIterable \u001b[39mand\u001b[39;00m \\\n\u001b[0;32m    684\u001b[0m         \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_IterableDataset_len_called \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m \\\n\u001b[0;32m    685\u001b[0m         \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_yielded \u001b[39m>\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_IterableDataset_len_called:\n",
+            "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\dataloader.py:721\u001b[0m, in \u001b[0;36m_SingleProcessDataLoaderIter._next_data\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m    719\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_next_data\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[0;32m    720\u001b[0m     index \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_next_index()  \u001b[39m# may raise StopIteration\u001b[39;00m\n\u001b[1;32m--> 721\u001b[0m     data \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_dataset_fetcher\u001b[39m.\u001b[39;49mfetch(index)  \u001b[39m# may raise StopIteration\u001b[39;00m\n\u001b[0;32m    722\u001b[0m     \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_pin_memory:\n\u001b[0;32m    723\u001b[0m         data \u001b[39m=\u001b[39m _utils\u001b[39m.\u001b[39mpin_memory\u001b[39m.\u001b[39mpin_memory(data, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_pin_memory_device)\n",
+            "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\_utils\\fetch.py:49\u001b[0m, in \u001b[0;36m_MapDatasetFetcher.fetch\u001b[1;34m(self, possibly_batched_index)\u001b[0m\n\u001b[0;32m     47\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mfetch\u001b[39m(\u001b[39mself\u001b[39m, possibly_batched_index):\n\u001b[0;32m     48\u001b[0m     \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mauto_collation:\n\u001b[1;32m---> 49\u001b[0m         data \u001b[39m=\u001b[39m [\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset[idx] \u001b[39mfor\u001b[39;00m idx \u001b[39min\u001b[39;00m possibly_batched_index]\n\u001b[0;32m     50\u001b[0m     \u001b[39melse\u001b[39;00m:\n\u001b[0;32m     51\u001b[0m         data \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset[possibly_batched_index]\n",
+            "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\_utils\\fetch.py:49\u001b[0m, in \u001b[0;36m<listcomp>\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m     47\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mfetch\u001b[39m(\u001b[39mself\u001b[39m, possibly_batched_index):\n\u001b[0;32m     48\u001b[0m     \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mauto_collation:\n\u001b[1;32m---> 49\u001b[0m         data \u001b[39m=\u001b[39m [\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdataset[idx] \u001b[39mfor\u001b[39;00m idx \u001b[39min\u001b[39;00m possibly_batched_index]\n\u001b[0;32m     50\u001b[0m     \u001b[39melse\u001b[39;00m:\n\u001b[0;32m     51\u001b[0m         data \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset[possibly_batched_index]\n",
+            "File \u001b[1;32mb:\\Programs\\Miniconda\\envs\\tdde19\\lib\\site-packages\\torch\\utils\\data\\dataset.py:290\u001b[0m, in \u001b[0;36mSubset.__getitem__\u001b[1;34m(self, idx)\u001b[0m\n\u001b[0;32m    288\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(idx, \u001b[39mlist\u001b[39m):\n\u001b[0;32m    289\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset[[\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindices[i] \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m idx]]\n\u001b[1;32m--> 290\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdataset[\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mindices[idx]]\n",
+            "\u001b[1;32mc:\\Users\\Albin\\Documents\\TDDE19\\codebase\\Neural graph module\\ngm.ipynb Cell 7\u001b[0m in \u001b[0;36mMyDataset.__getitem__\u001b[1;34m(self, idx)\u001b[0m\n\u001b[0;32m     <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=13'>14</a>\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__getitem__\u001b[39m(\u001b[39mself\u001b[39m, idx):\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#W6sZmlsZQ%3D%3D?line=14'>15</a>\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39minputs[idx], \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mattention_mask[idx], \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrelations\u001b[39m.\u001b[39;49mindex(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcorrect_rels[idx]), \u001b[39mself\u001b[39m\u001b[39m.\u001b[39ments[idx]\n",
+            "\u001b[1;31mValueError\u001b[0m: 'dbo:commander' is not in list"
           ]
         }
       ],
@@ -289,12 +304,12 @@
         "        return json.load(f)\n",
         "\n",
         "\n",
-        "#relations = open_json(\"../data/relations-query-qald-9-linked.json\")\n",
-        "relations = open_json(\"../data/relations-all-no-http-lowercase.json\")\n",
+        "relations = open_json(\"../data/relations-all-lc-quad-no-http.json\")\n",
+        "#relations = open_json(\"../data/relations-all-no-http-lowercase.json\")\n",
         "\n",
         "# \"../data/qald-9-train-linked.json\"\n",
         "#pred = \"../LC-QuAD/combined-requeried-linked-train.json\"\n",
-        "inputs, attention_mask, correct_rels, sub_objs = make_batch(src=\"../LC-QuAD/combined-requeried-linked-train.json\", http_prefix = True) #train\n",
+        "inputs, attention_mask, correct_rels, sub_objs = make_batch(src=\"../data/lcquad-train.json\", http_prefix = True) #train\n",
         "\n",
         "# relations = open_json(\"../data/relations-lcquad-without-http-train-linked.json\")\n",
         "# train_set = MyDataset(*make_batch(), relations=relations)\n",
@@ -319,16 +334,18 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 24,
+      "execution_count": null,
       "metadata": {},
       "outputs": [
         {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight']\n",
-            "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
-            "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
+          "ename": "NameError",
+          "evalue": "name 'NgmOne' is not defined",
+          "output_type": "error",
+          "traceback": [
+            "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+            "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+            "\u001b[1;32mc:\\Users\\Albin\\Documents\\TDDE19\\codebase\\Neural graph module\\ngm.ipynb Cell 8\u001b[0m in \u001b[0;36m<cell line: 13>\u001b[1;34m()\u001b[0m\n\u001b[0;32m      <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m headers \u001b[39m=\u001b[39m {\n\u001b[0;32m      <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m     \u001b[39m'\u001b[39m\u001b[39mAccept\u001b[39m\u001b[39m'\u001b[39m: \u001b[39m'\u001b[39m\u001b[39mapplication/sparql-results+json\u001b[39m\u001b[39m'\u001b[39m,\n\u001b[0;32m      <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=8'>9</a>\u001b[0m     \u001b[39m'\u001b[39m\u001b[39mContent-Type\u001b[39m\u001b[39m'\u001b[39m: \u001b[39m'\u001b[39m\u001b[39mapplication/x-www-form-urlencoded\u001b[39m\u001b[39m'\u001b[39m,\n\u001b[0;32m     <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=9'>10</a>\u001b[0m }\n\u001b[0;32m     <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=11'>12</a>\u001b[0m \u001b[39m# Initialize model\u001b[39;00m\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/Albin/Documents/TDDE19/codebase/Neural%20graph%20module/ngm.ipynb#X10sZmlsZQ%3D%3D?line=12'>13</a>\u001b[0m model \u001b[39m=\u001b[39m NgmOne(device, relations)\n",
+            "\u001b[1;31mNameError\u001b[0m: name 'NgmOne' is not defined"
           ]
         }
       ],
@@ -350,7 +367,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 35,
+      "execution_count": null,
       "metadata": {},
       "outputs": [
         {
@@ -376,9 +393,9 @@
         "optimizer = optim.Adam(model.parameters(), lr=0.001)\n",
         "#optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=0.5)\n",
         "\n",
-        "epoch = 10\n",
+        "epoch = 5\n",
         "batch_size = 8\n",
-        "alpha = 0.5\n",
+        "alpha = 0.8\n",
         "train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True)\n",
         "valid_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=True)\n",
         "\n",
@@ -464,7 +481,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 38,
+      "execution_count": null,
       "metadata": {},
       "outputs": [
         {
@@ -641,7 +658,7 @@
   ],
   "metadata": {
     "kernelspec": {
-      "display_name": "Python 3.9.11 64-bit",
+      "display_name": "Python 3.10.4 ('tdde19')",
       "language": "python",
       "name": "python3"
     },
@@ -655,12 +672,12 @@
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
-      "version": "3.9.11"
+      "version": "3.10.4"
     },
     "orig_nbformat": 4,
     "vscode": {
       "interpreter": {
-        "hash": "64e7cd3b4b88defe39dd61a4584920400d6beb2615ab2244e340c2e20eecdfe9"
+        "hash": "8e4aa0e1a1e15de86146661edda0b2884b54582522f7ff2b916774ba6b8accb1"
       }
     }
   },
diff --git a/data/relations-all-lc-quad-no-http-2.json b/data/relations-all-lc-quad-no-http-2.json
new file mode 100644
index 0000000000000000000000000000000000000000..72112bd66c04a658e3a98b1b5642de6d30ea9fca
--- /dev/null
+++ b/data/relations-all-lc-quad-no-http-2.json
@@ -0,0 +1,443 @@
+[
+  "dbp:doctoraladvisor",
+  "dbp:editing",
+  "dbo:bronzemedalist",
+  "dbp:knownfor",
+  "dbp:creators",
+  "dbp:leadertitle",
+  "dbp:architect",
+  "dbp:designer",
+  "dbp:junction",
+  "dbo:producer",
+  "dbo:federalstate",
+  "dbo:militaryrank",
+  "dbo:nationality",
+  "dbo:associatedmusicalartist",
+  "dbo:architect",
+  "dbo:routestart",
+  "dbo:manager",
+  "dbp:managerclubs",
+  "dbo:architecturalstyle",
+  "dbp:buildingtype",
+  "dbo:cpu",
+  "dbo:ideology",
+  "dbp:engine",
+  "dbp:president",
+  "dbp:placeofbirth",
+  "dbp:draftteam",
+  "dbo:publisher",
+  "dbo:formerteam",
+  "dbo:network",
+  "dbo:rivermouth",
+  "dbo:family",
+  "dbo:river",
+  "dbo:composer",
+  "dbo:territory",
+  "dbo:stylisticorigin",
+  "dbp:label",
+  "dbp:founded",
+  "dbp:office",
+  "dbo:leader",
+  "dbp:nationalteam",
+  "dbo:associatedband",
+  "dbo:inflow",
+  "dbo:kingdom",
+  "dbp:university",
+  "dbp:firstteam",
+  "dbo:hometown",
+  "dbp:notableworks",
+  "dbo:writer",
+  "dbo:starring",
+  "dbp:editor",
+  "dbo:lyrics",
+  "dbo:veneratedin",
+  "dbp:deathdate",
+  "dbo:phylum",
+  "dbp:affiliation",
+  "dbp:owner",
+  "dbo:builder",
+  "dbo:director",
+  "dbp:album",
+  "dbp:starring",
+  "dbp:chancellor",
+  "dbp:company",
+  "dbp:maininterests",
+  "dbo:school",
+  "dbp:governingbody",
+  "dbp:narrated",
+  "dbp:recorded",
+  "dbo:artist",
+  "dbp:international",
+  "dbo:automobileplatform",
+  "dbp:deathplace",
+  "dbp:citizenship",
+  "dbp:domain",
+  "dbo:servingrailwayline",
+  "dbp:allegiance",
+  "dbo:colour",
+  "dbo:citizenship",
+  "dbp:operatingsystem",
+  "dbp:guests",
+  "dbo:binomialauthority",
+  "dbp:purpose",
+  "dbp:commander",
+  "dbo:mountainrange",
+  "dbp:employer",
+  "dbp:almamater",
+  "dbo:county",
+  "dbp:appointer",
+  "dbp:associatedacts",
+  "dbo:parentcompany",
+  "dbp:occupation",
+  "dbo:related",
+  "dbp:education",
+  "dbo:owningcompany",
+  "dbo:hubairport",
+  "dbp:programminglanguage",
+  "dbp:locationcountry",
+  "dbp:district",
+  "dbo:team",
+  "dbp:battles",
+  "dbp:keypeople",
+  "dbp:homestadium",
+  "dbp:playedfor",
+  "dbo:basedon",
+  "dbp:team",
+  "dbo:coach",
+  "dbp:club",
+  "dbp:awards",
+  "dbp:currentclub",
+  "dbp:currentmembers",
+  "dbo:genre",
+  "dbo:academicdiscipline",
+  "dbo:largestcity",
+  "dbp:stadium",
+  "dbo:president",
+  "dbo:voice",
+  "dbo:language",
+  "dbp:cities",
+  "dbo:illustrator",
+  "dbo:denomination",
+  "dbp:successor",
+  "dbo:cinematography",
+  "dbp:broadcastarea",
+  "dbo:album",
+  "dbp:music",
+  "dbp:jurisdiction",
+  "dbo:product",
+  "dbo:trainer",
+  "dbp:spouse",
+  "dbo:militarybranch",
+  "dbp:league",
+  "dbp:characters",
+  "dbp:commandstructure",
+  "dbo:board",
+  "dbo:otherparty",
+  "dbp:youthclubs",
+  "dbo:designer",
+  "dbo:assembly",
+  "dbo:stadium",
+  "dbo:relative",
+  "dbp:foundation",
+  "dbp:rank",
+  "dbp:deathcause",
+  "dbo:movement",
+  "dbo:silvermedalist",
+  "dbo:service",
+  "dbo:party",
+  "dbp:crosses",
+  "dbp:school",
+  "dbo:maintainedby",
+  "dbo:placeofburial",
+  "dbp:placeofburial",
+  "dbp:notableinstruments",
+  "dbp:design",
+  "dbp:order",
+  "dbo:author",
+  "dbo:militaryunit",
+  "dbp:branch",
+  "dbp:relatives",
+  "dbo:series",
+  "dbp:title",
+  "dbp:birthname",
+  "dbo:locatedinarea",
+  "dbo:neighboringmunicipality",
+  "dbo:opponent",
+  "dbo:targetairport",
+  "dbo:employer",
+  "dbp:province",
+  "dbp:place",
+  "dbo:musicby",
+  "dbo:poledriver",
+  "dbp:manufacturer",
+  "dbo:executiveproducer",
+  "dbp:director",
+  "dbo:university",
+  "dbp:fields",
+  "dbp:hometown",
+  "dbo:league",
+  "dbo:languagefamily",
+  "dbo:majorshrine",
+  "dbo:portrayer",
+  "dbo:distributor",
+  "dbo:recordedin",
+  "dbo:literarygenre",
+  "dbo:city",
+  "dbp:firstdriver",
+  "dbp:tenants",
+  "dbo:gender",
+  "dbp:format",
+  "dbp:writers",
+  "dbo:academicadvisor",
+  "dbo:knownfor",
+  "dbp:licensee",
+  "dbo:keyperson",
+  "dbp:nationality",
+  "dbp:neighboringmunicipalities",
+  "dbo:operatingsystem",
+  "dbp:arena",
+  "dbo:ethnicity",
+  "dbp:affiliations",
+  "dbp:ground",
+  "dbp:race",
+  "dbo:campus",
+  "dbo:breeder",
+  "dbo:affiliation",
+  "dbp:name",
+  "dbo:computingplatform",
+  "dbp:country",
+  "dbp:cinematography",
+  "dbo:headquarter",
+  "dbo:battle",
+  "dbp:largestcity",
+  "dbo:foundationplace",
+  "dbp:pastmembers",
+  "dbp:screenplay",
+  "dbo:programminglanguage",
+  "dbo:broadcastarea",
+  "dbo:founder",
+  "dbp:residence",
+  "dbp:partner",
+  "dbp:teamname",
+  "dbp:party",
+  "dbo:discoverer",
+  "dbo:foundedby",
+  "dbp:deputy",
+  "dbp:founder",
+  "dbp:mission",
+  "dbo:highschool",
+  "dbp:titles",
+  "dbo:previouswork",
+  "dbp:notablecommanders",
+  "dbp:locationtown",
+  "dbo:almamater",
+  "dbo:destination",
+  "dbo:debutteam",
+  "dbo:deathcause",
+  "dbp:animator",
+  "dbp:creator",
+  "dbo:governmenttype",
+  "dbo:education",
+  "dbo:award",
+  "dbp:veneratedin",
+  "dbp:genre",
+  "dbo:authority",
+  "dbp:hubs",
+  "dbo:garrison",
+  "dbp:coach",
+  "dbp:languages",
+  "dbp:flagbearer",
+  "dbp:sisternames",
+  "dbp:subject",
+  "dbo:college",
+  "dbo:subsequentwork",
+  "dbp:restingplace",
+  "dbp:position",
+  "dbo:sport",
+  "dbp:prizes",
+  "dbp:currency",
+  "dbo:owner",
+  "dbp:assembly",
+  "dbp:services",
+  "dbp:religiousaffiliation",
+  "dbo:homestadium",
+  "dbo:deathplace",
+  "dbo:order",
+  "dbo:birthplace",
+  "dbp:combatant",
+  "dbo:species",
+  "dbo:commandstructure",
+  "dbp:nationalorigin",
+  "dbo:field",
+  "dbp:parent",
+  "dbo:chairman",
+  "dbo:ingredient",
+  "dbp:officialname",
+  "dbp:leader",
+  "dbp:distributor",
+  "dbp:language",
+  "dbo:tenant",
+  "dbo:presenter",
+  "dbp:manager",
+  "dbo:training",
+  "dbo:sisterstation",
+  "dbp:carries",
+  "dbp:houses",
+  "dbo:editor",
+  "dbp:architecture",
+  "dbo:programmeformat",
+  "dbp:lieutenant",
+  "dbp:birthplace",
+  "dbo:creator",
+  "dbp:placeofdeath",
+  "dbp:role",
+  "dbo:license",
+  "dbo:type",
+  "dbo:editing",
+  "dbp:beatifiedby",
+  "dbp:borough",
+  "dbo:subsidiary",
+  "dbo:stateoforigin",
+  "dbp:majorshrine",
+  "dbp:author",
+  "dbo:country",
+  "dbp:birthdate",
+  "dbo:notablework",
+  "dbp:college",
+  "dbp:location",
+  "dbo:region",
+  "dbp:operator",
+  "dbp:workinstitutions",
+  "dbo:firstascentperson",
+  "dbp:predecessor",
+  "dbo:season",
+  "dbp:training",
+  "dbo:commander",
+  "dbo:ceremonialcounty",
+  "dbp:executiveproducer",
+  "dbo:athletics",
+  "dbo:occupation",
+  "dbo:mayor",
+  "dbo:spouse",
+  "dbp:children",
+  "dbp:type",
+  "dbp:firstaired",
+  "dbp:constituency",
+  "dbp:sisterstations",
+  "dbp:governor",
+  "dbo:managerclub",
+  "dbo:location",
+  "dbo:regionserved",
+  "dbp:primeminister",
+  "dbo:nearestcity",
+  "dbp:athletics",
+  "dbo:predecessor",
+  "dbp:lyrics",
+  "dbo:launchsite",
+  "dbo:capital",
+  "dbo:lieutenant",
+  "dbp:line",
+  "dbo:firstdriver",
+  "dbo:child",
+  "dbp:coverartist",
+  "dbp:address",
+  "dbp:discipline",
+  "dbp:developer",
+  "dbp:highschool",
+  "dbp:cityserved",
+  "dbo:successor",
+  "dbp:garrison",
+  "dbp:champion",
+  "dbp:artist",
+  "dbp:producer",
+  "dbp:state",
+  "dbo:formerbandmember",
+  "dbo:parentorganisation",
+  "dbo:profession",
+  "dbp:material",
+  "dbo:origin",
+  "dbp:poledriver",
+  "dbo:locationcity",
+  "dbp:mother",
+  "dbo:doctoraladvisor",
+  "dbp:city",
+  "dbo:institution",
+  "dbp:architecturalstyle",
+  "dbp:related",
+  "dbp:area",
+  "dbp:religion",
+  "dbp:region",
+  "dbo:layout",
+  "dbp:inflow",
+  "dbp:magazine",
+  "dbo:currency",
+  "dbp:writer",
+  "dbo:wineregion",
+  "dbp:pastteams",
+  "dbp:membership",
+  "dbo:nonfictionsubject",
+  "dbo:incumbent",
+  "dbp:venue",
+  "dbo:parent",
+  "dbo:countyseat",
+  "dbo:distributinglabel",
+  "dbp:headquarters",
+  "dbp:nickname",
+  "dbo:residence",
+  "dbo:timezone",
+  "dbp:destinations",
+  "dbo:mouthmountain",
+  "dbp:debutteam",
+  "dbo:anthem",
+  "dbo:jurisdiction",
+  "dbp:mascot",
+  "dbo:partner",
+  "dbp:doctoralstudents",
+  "dbo:primeminister",
+  "dbo:club",
+  "dbp:haircolor",
+  "dbo:instrument",
+  "dbp:thememusiccomposer",
+  "dbp:leadername",
+  "dbo:monarch",
+  "dbo:developer",
+  "dbp:os",
+  "dbp:meaning",
+  "dbo:operator",
+  "dbo:relation",
+  "dbp:archipelago",
+  "dbo:significantbuilding",
+  "dbo:narrator",
+  "dbo:formerpartner",
+  "dbo:doctoralstudent",
+  "dbo:ground",
+  "dbp:presenter",
+  "dbp:license",
+  "dbo:division",
+  "dbo:bandmember",
+  "dbp:schooltype",
+  "dbo:religion",
+  "dbp:field",
+  "dbp:origin",
+  "dbp:locationcity",
+  "dbp:agencyname",
+  "dbp:gender",
+  "dbp:owners",
+  "dbo:manufacturer",
+  "dbo:officiallanguage",
+  "dbo:honours",
+  "dbp:hostcity",
+  "dbp:products",
+  "dbo:race",
+  "dbp:canonizedby",
+  "dbo:routeend",
+  "dbp:nearestcity",
+  "dbp:mainingredient",
+  "dbo:outflow",
+  "dbo:restingplace",
+  "dbp:publisher",
+  "dbp:trainer",
+  "dbp:style",
+  "dbp:outflow",
+  "dbp:chairman"
+]