This vignette illustrates how to use lab4 package to perform linear progression models and to perform various special functions like print(), plot(), resid(), pred(),coef() and summary().
For testing purpose, here we are using iris dataset, containing measurements of features of flower iris. To load data use the following:
This Function will take two parameters namely formula and data. Type of formula is an expression specifying the relationship between dependent and independent variables, whereas data is the dataset(iris in this case).
Printing the coefficients and coefficients name of the model generated using linreg function.This can be invoked by the following
Plotting for residuals against Fitted Values and for Scale-Locations against sqaure root of standardized residuals.
plots <- linreg_mod$plot()
#> Warning in sqrt(residuals/(sqrt(abs(res_variance)))): NaNs produced
print(plots[[1]])
print(plots[[2]])
#> Warning: Removed 79 rows containing non-finite outside the scale range
#> (`stat_summary()`).
#> Warning: Removed 79 rows containing missing values or values outside the scale range
#> (`geom_point()`).
## Resid Function Resid Function is to display the residuals of the
model as a vector.
# Get residuals
residuals <- linreg_mod$resid()
print(residuals)
#> 1 2 3 4 5 6
#> -0.445578965 -0.759772100 -0.236928933 0.006767993 -0.134157381 -0.142807413
#> 7 8 9 10 11 12
#> 0.308354980 -0.301882039 -0.005838155 -0.525909771 -0.610532071 0.153236470
#> 13 14 15 16 17 18
#> -0.582212845 0.005583428 -1.219182103 -0.206173533 -0.542807413 -0.445578965
#> 19 20 21 22 23 24
#> -0.809347506 0.056008022 -0.812119057 -0.077854307 0.176079637 -0.413303622
#> 25 26 27 28 29 30
#> 0.453236470 -0.737331354 -0.201882039 -0.523138219 -0.757000548 0.063071067
#> 31 32 33 34 35 36
#> -0.248350516 -1.012119057 0.280035754 -0.218779681 -0.525909771 -0.869606697
#> 37 38 39 40 41 42
#> -1.255815983 0.043401874 0.028024174 -0.479441294 -0.368019710 -1.086571383
#> 43 44 45 46 47 48
#> 0.295748831 -0.068019710 0.456008022 -0.582212845 0.156008022 0.040630322
#> 49 50 51 52 53 54
#> -0.432972816 -0.535744368 -0.920791790 -0.055436262 -0.677094864 -0.162163930
#> 55 56 57 58 59 60
#> -0.668444832 0.652029205 0.455985322 0.337053927 -0.712141758 0.805963150
#> 61 62 63 64 65 66
#> -0.175954643 0.264635354 -1.183822532 0.275654516 0.063450789 -0.821976354
#> 67 68 69 70 71 72
#> 1.097313118 -0.059392378 -1.038941041 -0.171998527 1.132360012 -0.558207813
#> 73 74 75 76 77 78
#> -0.414913309 0.141792187 -0.657023248 -0.778279429 -1.001122596 -0.355838683
#> 79 80 81 82 83 84
#> 0.253213770 -0.615695452 -0.228301601 -0.328301601 -0.259392378 0.585489113
#> 85 86 87 88 89 90
#> 1.452431627 0.922525415 -0.521976354 -1.182637967 0.697313118 0.105560728
#> 91 92 93 94 95 96
#> 0.639423057 0.309516845 -0.293254707 0.025632344 0.395726131 0.619753863
#> 97 98 99 100 101 102
#> 0.485891534 -0.301904739 -0.184202253 0.252029205 1.755985322 0.940607622
#> 103 104 105 106 107 108
#> -0.166075702 0.820536006 0.799279826 -0.353871975 1.670916256 -0.255056540
#> 109 110 111 112 113 114
#> -0.225150328 0.659539017 0.367004484 0.075252094 -0.033397938 0.750442219
#> 115 116 117 118 119 120
#> 1.074469951 0.744563738 0.499279826 0.639467401 -0.766880545 -0.183822532
#> 121 122 123 124 125 126
#> 0.256767465 1.229588460 -0.699155888 -0.147188651 0.745748303 0.024089701
#> 127 128 129 130 131 132
#> 0.064232932 0.609516845 0.509114423 -0.443634957 -0.766478124 -0.015651108
#> 133 134 135 136 137 138
#> 0.509114423 0.186673677 0.774067529 -1.031431230 1.489847651 0.810701409
#> 139 140 141 142 143 144
#> 0.687076099 -0.177094864 0.378023646 -0.477094864 0.940607622 0.634326720
#> 145 146 147 148 149 150
#> 0.745748303 -0.155838683 -0.314913309 0.199279826 1.467406905 1.164635354
pred Function is to display the predicted values of the model.
# Get predicted values
predictions <- linreg_mod$pred()
print(predictions)
#> [1] 1.8455790 2.1597721 1.5369289 1.4932320 1.5341574 1.8428074 1.0916450
#> [8] 1.8018820 1.4058382 2.0259098 2.1105321 1.4467635 1.9822128 1.0944166
#> [15] 2.4191821 1.7061735 1.8428074 1.8455790 2.5093475 1.4439920 2.5121191
#> [22] 1.5778543 0.8239204 2.1133036 1.4467635 2.3373314 1.8018820 2.0231382
#> [29] 2.1570005 1.5369289 1.8483505 2.5121191 1.2199642 1.6187797 2.0259098
#> [36] 2.0696067 2.5558160 1.3565981 1.2719758 1.9794413 1.6680197 2.3865714
#> [43] 1.0042512 1.6680197 1.4439920 1.9822128 1.4439920 1.3593697 1.9329728
#> [50] 1.9357444 5.6207918 4.5554363 5.5770949 4.1621639 5.2684448 3.8479708
#> [57] 4.2440147 2.9629461 5.3121418 3.0940369 3.6759546 3.9353646 5.1838225
#> [64] 4.4243455 3.5365492 5.2219764 3.4026869 4.1593924 5.5389410 4.0719985
#> [71] 3.6676400 4.5582078 5.3149133 4.5582078 4.9570232 5.1782794 5.8011226
#> [78] 5.3558387 4.2467862 4.1156955 4.0283016 4.0283016 4.1593924 4.5145109
#> [85] 3.0475684 3.5774746 5.2219764 5.5826380 3.4026869 3.8944393 3.7605769
#> [92] 4.2904832 4.2932547 3.2743677 3.8042739 3.5802461 3.7141085 4.6019047
#> [99] 3.1842023 3.8479708 4.2440147 4.1593924 6.0660757 4.7794640 5.0007202
#> [106] 6.9538720 2.8290837 6.5550565 6.0251503 5.4404610 4.7329955 5.2247479
#> [113] 5.5333979 4.2495578 4.0255300 4.5554363 5.0007202 6.0605326 7.6668805
#> [120] 5.1838225 5.4432325 3.6704115 7.3991559 5.0471887 4.9542517 5.9759103
#> [127] 4.7357671 4.2904832 5.0908856 6.2436350 6.8664781 6.4156511 5.0908856
#> [134] 4.9133263 4.8259325 7.1314312 4.1101523 4.6892986 4.1129239 5.5770949
#> [141] 5.2219764 5.5770949 4.1593924 5.2656733 4.9542517 5.3558387 5.3149133
#> [148] 5.0007202 3.9325931 3.9353646
Summary function is to display coefficients along with standard error, t-values, p-values with significance.
Save the Vignette: Save the above content in a
file named using_linreg.Rmd
within the
vignettes/
directory of your package.
Build the Vignette: Ensure that you have the
necessary packages installed for building vignettes, such as
knitr
and rmarkdown
. Then, build your package
using:
```r devtools::build_vignettes()