diff --git a/labs/l2-basic/nlp-l2-basic.ipynb b/labs/l2-basic/nlp-l2-basic.ipynb index 2604cc2f93ee61ce670556afadb46154778f8535..bcc64500b52dafcbe92b528eb6af20089c4408c9 100644 --- a/labs/l2-basic/nlp-l2-basic.ipynb +++ b/labs/l2-basic/nlp-l2-basic.ipynb @@ -110,7 +110,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Problem 1: Build the vocabulary and frequency table" + "## Problem 1: Build the vocabulary and frequency table (2 points)" ] }, { @@ -175,7 +175,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Problem 2: Preprocess the data" + "## Problem 2: Preprocess the data (2 points)" ] }, { @@ -251,7 +251,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Problem 3: Generate the training examples" + "## Problem 3: Generate the training examples (8 points)" ] }, { @@ -372,7 +372,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Problem 4: Implement the model" + "## Problem 4: Implement the model (2 points)" ] }, { @@ -456,7 +456,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Problem 5: Train the model" + "## Problem 5: Train the model (2 points)" ] }, { @@ -544,7 +544,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Problem 6: Analyse the embeddings (reflection)" + "## Problem 6: Analyse the embeddings (6 points)" ] }, { @@ -618,8 +618,7 @@ "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.10" + "pygments_lexer": "ipython3" } }, "nbformat": 4,