Lab 2

Server-side Development

using Python and SQL

Spring 2021
TDDD97 Web Programming
http://www.ida.liu.se/~TDDD97/
Department of Computer and Information Science (IDA)
Linképing University

Sweden






1. Introduction

In this second lab, you will use Python and SQL to implement the server-side of the final web application.
You will use the Flask micro-framework, and the SQLite to handle web requests and data storage
respectively.

You are required to develop step by step and implement each step according to the instructions. Once
you are finished with each lab, you will present your work to your responsible lab assistant. For more
specific information about the presentation and evaluation process of lab 2, please check section 6:
Presentation and Evaluation. For more general information about the examination process, please check
the course page.

Requirements

By the end of lab 2, the following requirements shall be met:

Functional:
e All the server functions specified in the lab instructions shall work exactly as specified.

Non-Functional:
e The server shall use an SQLite database to store all user data.
e The server shall use appropriate HTTP methods for all routes.
e All the server-side methods will return the result in JSON.



2. The Project Folder

You need to create a new project folder with an arbitrary name. Your project folder shall at least contain
the following files by the end of lab 2:

1. server.py

2. database helper.py

3. database.db

4. schema.sql
SErver.py

This file shall contain all the server side remote procedures, implemented using Python and Flask.

database helper.py

This file will contain all the functions that access and control the database and shall contain some SQL
scripts. This file will be used by the server to access the database. This file shall NOT contain any
domain functions like signin or signup and shall only contain data-centric functionality like
find_user(), remove_user(), create_post() and ... . E.g. Implementing sign_in() in server.py shall
involve a call to find_user() implemented in database helper.py .

database.db

This is a SQLite file which will contain your database. Your database is composed of different tables
which in turn contain the actual data, such as users’ personal information.

schema.sql

This file shall contain the SQL script used to initialize the database. database helper.py or
SQLite3 front-end will use this file to create all the tables and insert the default data. This file should be
completed and executed before implementing and running any of the server side procedures.



3. Development tools

Like in lab 1 you are free to use any text/code editor of your choice. We recommend though Atom as it
has worked smoothly in the course without any problems.You will also need the following tools to
complete lab 2.

Python

In order to be able to install the packages you need to complete this lab you will need to create a virtual
environment for Python, in which you can install additional modules. In this lab you are required to use
Python 3 . You can verify which version of Python you are running by executing the following command
in a terminal:

python3 -V

Now you need to proceed to create a new directory for the virtual environment. Python virtual
environments are created using the command line tool virtualenv. You can learn how to use
virtualenv in the documentation found at their website:
https://virtualenv.pypa.io/en/latest/user_guide.html . Please note that you shall need virtualenv
command to install Python 3 as following:

virtualenv -p python3 specified_directory

Use virtualenv to create a new virtual environment in a new directory. virtualenv will
install a new version of Python found in “<specified directory>/bin”. virtualenv will
also install pip, a tool for managing and installing Python packages. The documentation for pip can be
found at https:/pip.pypa.io/en/stable/. You’ll need to use pip in order to install Flask.

Note: From this point you will work with the executables available in the virtual environment.
Note: In case of using Python 3, you need to use pip3 command instead of pip.

IMPORTANT

By using virtualenv, we can make a virtual machine with its own settings and libraries which is
customized for your web application. This is a common approach to create and use a separate and
isolated virtual machine for a new website.

Python documentation:
https://docs.python.org/3/


https://virtualenv.pypa.io/en/latest/user_guide.html
https://pip.pypa.io/en/stable/
https://docs.python.org/3/

Flask

Flask is a lightweight web framework written in Python. One of the good features of the Flask framework
is that it provides a built-in development web server and debugger. By using Flask you can write your
back-end code in Python and run it using the built-in web server. Flask can be added as a module to your
already created Python virtual environment using the pip command. The following links provide more
information about the Flask framework and how to install it.

Flask official website:
http://flask.pocoo.org/

Information about installing Flask:
http://flask.pocoo.org/docs/installation/

Once you are done you can use the command “pip freeze*to see which packages have been installed
by using pip and verify that Flask has been installed successfully. Make sure that you always run your
application using the executables in the virtual environment. If you use the global Python executable, any
packages installed using pip will not be available.

SQLite
SQLite is a relational database management system which is now widely used for client-side and
server-side purposes. It does not provide a separate process and lets you store your data directly in an
individual file on disk using SQL language. the version 3 of SQLite is available on the lab systems and
accessible via the command sqlite3. you can get information about how to use the SQLite3 front-end by
executing the following command on the lab systems:

man sqglite3

SQLite official website
http://www.sqlite.org/

Information about SQL language
http://www.w3schools.com/sql/default.a

Information about using SQLite3 in python programs
http://docs.python.org/2/library/sqglite3.html

Information about using SQLite3 with Flask framework
http://flask.poc rg/d atterns/sqlite3


http://flask.pocoo.org/
http://flask.pocoo.org/docs/installation/
http://www.sqlite.org/
http://www.w3schools.com/sql/default.asp
http://docs.python.org/2/library/sqlite3.html
http://flask.pocoo.org/docs/patterns/sqlite3/

Telnet client

Telnet is a network protocol for bidirectional text exchange over network. By Using telnet client you can
get connected to a web server and send http requests to it. Once your request is processed by the server, it
returns a text-based http response to the telnet client which is displayed right after. The Telnet client is
installed on our lab systems and your can access it by using the telnet command. you can get information
about how to use the Telnet client by executing the following command on the lab systems:

man telnet

Postman
You can also, instead of using telnet, use Postman which can be used for sending HTTP requests using a
provided Graphical User Interface. You can download Postman from the following page:

https://www.getpostman.com

HTTP basics

In this lab, you are about to write the server-side functionalities for your Twidder application. This means
you need to understand the basics of HTTP, the protocol used to transfer data in Web. There is a huge
amount of resources available online, we suggest taking a look at the following link:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics of HTTP

Make sure you read the parts about the POST and GET methods, to be able to use each of them in its
correct place. It is important to have a good understanding about what an HTTP header is and what it
contains.


https://www.getpostman.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP

4. Lab Instructions

The lab has been divided into the following two steps. After completing each server function, you are
required to test it using telnet.

Step 0: Hello Flask!

In this first step you are required to install the Flask framework on your system according to the
instructions available in section 2. Once it’s done, you will write a “Hello World” example and test it by
using Telnet or any other tools. An example can be found in the documentation provided for Flask.

Step 1: Implementing the Twidder back-end using Python and SQL

In this step you shall implement all the functions needed by your front-end application from lab 1. The
server functions you create here will often have a direct counterpart in “serverstub. js”, provided in
the previous lab. You will need to create a route for each function, so that it is accessible by the client.

The list of the functions you shall implement, and a small description for each function:

The list is formatted as this:
Function name

Description: A small description of what the function is intended to do.

Input: A description of what input the server is expecting.

Returned data: Either a description of what data the server should return, or a
to be returned.

[33RE)

if no special data is

sign in

Description: Authenticates the username by the provided password.
Input: Two string values representing the username (email address) and password.
Returned data: A randomly generated access token if the authentication is successful.

sign_up

Description: Registers a user in the database.

Input: Seven string values representing the following:email, password, firstname, familyname, gender,
city and country.

Returned data: -

Note:1 .This service needs to validate all received parameters to make sure that none of them is empty.
2. The password is at least X characters long. X shall be the same as the value used at the client-side.

sign_ out




Description: Signs out a user from the system.
Input: A string containing the access token of the user requesting to sign out.
Returned data: -

Change password

Description: Changes the password of the current user to a new one.
Input:
e token: A string containing the access token of the current user.
e oldPassword: The old password of the current user.
e newPassword: The new password.
Returned data: -

get user data by token

Description: Retrieves the stored data for the user whom the passed token is issued for. The currently
signed in user can use this method to retrieve all its own information from the server.

Input: A string containing the access token of the current user.

Returned data: email, firstname, familyname, gender, city and country.

get user data by email

Description: Retrieves the stored data for the user specified by the passed email address.
Input:

e token: A string containing the access token of the current user.

e email: The email address of the user to retrieve data for.
Returned data: email, firstname, family name, gender, city and country.

Get user messages by token

Description: Retrieves the stored messages for the user whom the passed token is issued for. The
currently signed in user can use this method to retrieve all its own messages from the server.

Input: A string containing the access token of the current user.

Returned data: A text string containing all of the messages sent to the user.

get user messages by email




Description: Retrieves the stored messages for the user specified by the passed email address.
Input:

e token: A string containing the access token of the current user.

e email: The email address of the user to retrieve messages for.
Returned data: All of the messages sent to the user.

post message

Description: Tries to post a message to the wall of the user specified by the email address.
Input:

e token: A string containing the access token of the current user.

e message: The message to post.

e cmail: The email address of the recipient.
Returned data: -

Each function, when invoked through its route, is required to return the data in JSON format containing
the following information, fields:

1. A text indicating if the function has been executed successfully or not. E.g. “true” or “false”.
2. A text message describing the success or failure.

3. The actual requested data.

Note: You can also use HTTP status codes instead of fields 1 and 2. Remember, if you do so then you

will need to upgrade your client-side code by the end of lab 3.

BONUS

Using correct status codes which are correctly reflected at the client-side shall give 2 points bonus
which can be used in the project. Fields 1 and 2 in the returned response shall not exist anymore and the
message/feedback shown to the user shall be decided by the client-side code based on the received
status code.

IMPORTANT
If needed, the service shall validate the received token to make sure the request is authentic.

To send the required data to the implemented services, you shall follow the following general rules:
1. Use the URL when the used method is GET.
2. Use JSON when the used method is POST or PUT.
3. Always use HTTP headers for sending the token.

You can use the Authorization header for receiving the token.

10



https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

One of the important tasks of the backend is to store information more or less permanently. In this step
you need to use SQLite3/SQL, using ORMs are also allowed, and python data structures to store certain
information at server side, for example information about signed up or signed in users. It’s up to you to
decide how to store each type of data but you need to defend your choice during presentation. If you are
in doubt, discuss your choice of implementation with your lab assistant.

As you proceed, you need to call the implemented procedures using the Telnet client, your browser or any
other tool. Telnet gives you the possibility to call server-side procedures with arbitrary arguments and
methods and investigate the output.

5. Questions for consideration

1. What security risks can storing passwords in plain text cause? How can this problem be
addressed programmatically?

2. As http requests and responses are text-based information, they can be easily intercepted and read
by a third-party on the Internet. Please explain how this problem has been solved in real-world
scenarios.

3. How can we use Flask for implementing multi-page web applications? Please explain how Flask
templates can help us on the way?

4. Please describe a Database Management System. How SQLite is different from other DBMSs?

5. Do you think the Telnet client is a good tool for testing server-side procedures? What are its
possible shortages?

6. Presentation and Evaluation

Once you are finished with lab 2, you will present your work to your direct lab assistant during a
scheduled lab session. You may be asked about the details of your implementation individually.

11



