
Task A

Student First Name Last
Name ID

1 Yong Loong Ang yonan994

2 Jarrett Shan
Wei Yeo jarye821

1. You should describe which elements implement the Strategy design pattern, and relate the
concepts in that design pattern to the example code given. You should be able to reason with
respect to both the basic example on GitLab and the elaborate one given above.

Component GitLab Example Given Example

Abstract Strategy Interface Enumerable enumerable IEnumerable

Actual Implementations / Concrete
Strategies

Enumerable
evenNumbers/oddNumbers

IEnumberable
evenNumbers

Both implement the Strategy pattern because the actual algorithms of even or odd numbers is a family of
algorithms which are interchangeable and thus there is a need for different variations. The classes thus only
differ only in their behaviour.

2. You should explain how the current implementation violates the principles of the Iterator
design pattern (applicable to both the basic example on GitLab and the elaborate one given
above).

In the Iterator design pattern, we need to have an Aggregate interface, Concrete Aggregate classes, Iterator
interface and Concrete Interator classes. However, in both examples, the ConcreteIterators do not exist and
the Concrete Aggregate uses a hard-coded operation of determining even/odd numbers instead. Since the
Iterator pattern should not expose its underlying representation/structure, the pattern is thus violated since we
know how the even/odd number is coded. We need to abstract the Iterator so that we can just use hasNext()

and next()  methods without knowing the actual code.

3. You should correct the implementation provided so that it works as intended. Explain why it
did not work initially.

The first issue is that the program starts by creating a general iterator, then tries to use that iterator to create
one that runs through even numbers and another that runs through odd numbers. However, the
where(IPredicate)  function did not return a new instance of the enumerator. It instead adds the predicate

filter to the old enumerator and passes it back using the same reference. This results in both evenNumbers

and oddNumbers  pointing to the same object which they had both applied their predicate filters. Thus,

whenever next()  is called, the code will skip all the even numbers and odd numbers.



This is fixed in the where()  function where we create a new temporary Enumerable<T>  object with local

variable name newEnumerable  and returning that new instance of newEnumerable  for each evenNumbers

and oddNumbers . This will allow both predicate filters to not have any conflict with each other.

The second issue is the Even number 7  output. In some instances, the program would traverse the entire

ArrayList  and return the last element. However, the element is not checked if the predicate filter matches it

before returning it.

This was fixed by ensuring the element passed the predicate filter. A check at the end of the next()  function

is to be added.

4. You should explain how you encapsulated all objects in interfaces to enforce Interface
Segregation, which states that all clients should use client specific interfaces. This assumes that
all methods accessible through an interface is useable by any client. In your explanation, provide
sufficient code to explain how to extend the current implementation to the elaborate
functionality given in the example above, by providing interfaces between the different classes.

In the given examples, IAction  and IPredicate  are abstract interfaces which classes can implement their

own methods. It is thus up to the client to specify exactly how the methods are implemented.

We used interfaces to allow us to pass interface objects as parameters in the methods of the Enumerable

class, viz. where(IPredicate<T> predicate)  and forEach(IAction<T> action) . We can thus pass in

the reference of the interface and polymorphically use the methods of the concrete classes of
predicate.accept()  and iterator.next()  without knowing the actual implementation of the methods.

Furthermore, these concrete objects implement small interfaces that other classes are able to use to define
functionality, thus no client should be made dependent on methods it does not use.

An example to extend the implementation is through a new ISkipping  interface to enable to skip/step

iteration. The concrete class evenSkipping  implements the interface with its own skipping()  method. In

this case, we can specify the numOfSkips  which is the steps or number of elements we skip per iteration.



public interface ISkipping<T> {

    public boolean skipping(Integer element);
}

public class evenSkipping implements ISkipping<Integer>{

    private int numOfSkips;

    public evenSkipping(int numOfSkips){
        this.numOfSkips = numofShips;
    }

    public boolean skipping(Integer element){
        // compare and return value
        return false;
    }
}


	Task A
	1. You should describe which elements implement the Strategy design pattern, and relate the concepts in that design pattern to the example code given. You should be able to reason with respect to both the basic example on GitLab and the elaborate one given above.
	2. You should explain how the current implementation violates the principles of the Iterator design pattern (applicable to both the basic example on GitLab and the elaborate one given above).
	3. You should correct the implementation provided so that it works as intended. Explain why it did not work initially.
	4. You should explain how you encapsulated all objects in interfaces to enforce Interface Segregation, which states that all clients should use client specific interfaces. This assumes that all methods accessible through an interface is useable by any client. In your explanation, provide sufficient code to explain how to extend the current implementation to the elaborate functionality given in the example above, by providing interfaces between the different classes.


