""" B-ASIC Operation Module. Contains the base for operations that are used by B-ASIC. """ import collections import collections.abc import itertools as it from abc import abstractmethod from numbers import Number from typing import ( TYPE_CHECKING, Dict, Iterable, List, Mapping, MutableMapping, NewType, Optional, Sequence, Tuple, Union, cast, overload, ) from b_asic.graph_component import AbstractGraphComponent, GraphComponent, GraphID, Name from b_asic.port import InputPort, OutputPort, SignalSourceProvider from b_asic.signal import Signal from b_asic.types import Num if TYPE_CHECKING: # Conditionally imported to avoid circular imports from b_asic.core_operations import ( Addition, ConstantMultiplication, Division, Multiplication, Reciprocal, Subtraction, ) from b_asic.signal_flow_graph import SFG ResultKey = NewType("ResultKey", str) ResultMap = Mapping[ResultKey, Optional[Num]] MutableResultMap = MutableMapping[ResultKey, Optional[Num]] DelayMap = Mapping[ResultKey, Num] MutableDelayMap = MutableMapping[ResultKey, Num] class Operation(GraphComponent, SignalSourceProvider): """ Operation interface. Operations are graph components that perform a certain function. They are connected to each other by signals through their input/output ports. Operations can be evaluated independently using evaluate_output(). Operations may specify how to quantize inputs through quantize_input(). """ @abstractmethod def __add__(self, src: Union[SignalSourceProvider, Num]) -> "Addition": """ Overloads the addition operator to make it return a new Addition operation object that is connected to the self and other objects. """ raise NotImplementedError @abstractmethod def __radd__(self, src: Union[SignalSourceProvider, Num]) -> "Addition": """ Overloads the addition operator to make it return a new Addition operation object that is connected to the self and other objects. """ raise NotImplementedError @abstractmethod def __sub__(self, src: Union[SignalSourceProvider, Num]) -> "Subtraction": """ Overloads the subtraction operator to make it return a new Subtraction operation object that is connected to the self and other objects. """ raise NotImplementedError @abstractmethod def __rsub__(self, src: Union[SignalSourceProvider, Num]) -> "Subtraction": """ Overloads the subtraction operator to make it return a new Subtraction operation object that is connected to the self and other objects. """ raise NotImplementedError @abstractmethod def __mul__( self, src: Union[SignalSourceProvider, Num] ) -> Union["Multiplication", "ConstantMultiplication"]: """ Overloads the multiplication operator to make it return a new Multiplication operation object that is connected to the self and other objects. If *src* is a number, then returns a ConstantMultiplication operation object instead. """ raise NotImplementedError @abstractmethod def __rmul__( self, src: Union[SignalSourceProvider, Num] ) -> Union["Multiplication", "ConstantMultiplication"]: """ Overloads the multiplication operator to make it return a new Multiplication operation object that is connected to the self and other objects. If *src* is a number, then returns a ConstantMultiplication operation object instead. """ raise NotImplementedError @abstractmethod def __truediv__(self, src: Union[SignalSourceProvider, Num]) -> "Division": """ Overloads the division operator to make it return a new Division operation object that is connected to the self and other objects. """ raise NotImplementedError @abstractmethod def __rtruediv__( self, src: Union[SignalSourceProvider, Num] ) -> Union["Division", "Reciprocal"]: """ Overloads the division operator to make it return a new Division operation object that is connected to the self and other objects. """ raise NotImplementedError @abstractmethod def __lshift__(self, src: SignalSourceProvider) -> Signal: """ Overloads the left shift operator to make it connect the provided signal source to this operation's input, assuming it has exactly 1 input port. Returns the new signal. """ raise NotImplementedError @property @abstractmethod def input_count(self) -> int: """Get the number of input ports.""" raise NotImplementedError @property @abstractmethod def output_count(self) -> int: """Get the number of output ports.""" raise NotImplementedError @abstractmethod def input(self, index: int) -> InputPort: """Get the input port at the given index.""" raise NotImplementedError @abstractmethod def output(self, index: int) -> OutputPort: """Get the output port at the given index.""" raise NotImplementedError @property @abstractmethod def inputs(self) -> Sequence[InputPort]: """Get all input ports.""" raise NotImplementedError @property @abstractmethod def outputs(self) -> Sequence[OutputPort]: """Get all output ports.""" raise NotImplementedError @property @abstractmethod def input_signals(self) -> Sequence[Signal]: """ Get all the signals that are connected to this operation's input ports, in no particular order. """ raise NotImplementedError @property @abstractmethod def output_signals(self) -> Sequence[Signal]: """ Get all the signals that are connected to this operation's output ports, in no particular order. """ raise NotImplementedError @abstractmethod def key(self, index: int, prefix: str = "") -> ResultKey: """ Get the key used to access the output of a certain output of this operation from the output parameter passed to current_output(s) or evaluate_output(s). """ raise NotImplementedError @abstractmethod def current_output( self, index: int, delays: Optional[DelayMap] = None, prefix: str = "" ) -> Optional[Num]: """ Get the current output at the given index of this operation, if available. The *delays* parameter will be used for lookup. The *prefix* parameter will be used as a prefix for the key string when looking for delays. See Also -------- current_outputs, evaluate_output, evaluate_outputs """ raise NotImplementedError @abstractmethod def evaluate_output( self, index: int, input_values: Sequence[Num], results: Optional[MutableResultMap] = None, delays: Optional[MutableDelayMap] = None, prefix: str = "", bits_override: Optional[int] = None, quantize: bool = True, ) -> Num: """ Evaluate the output at the given index of this operation with the given input values. Parameters ---------- index : int Which output to return the value for. input_values : array of float or complex The input values. results : MutableResultMap. optional Used to store any results (including intermediate results) for caching. delays : MutableDelayMap. optional Used to get the current value of any intermediate delay elements that are encountered, and be updated with their new values. prefix : str, optional Used as a prefix for the key string when storing results/delays. bits_override : int, optional Specifies a word length override when truncating inputs which ignores the word length specified by the input signal. quantize : bool, default: True Specifies whether input truncation should be enabled in the first place. If set to False, input values will be used directly without any bit truncation. See Also -------- evaluate_outputs, current_output, current_outputs """ raise NotImplementedError @abstractmethod def current_outputs( self, delays: Optional[DelayMap] = None, prefix: str = "" ) -> Sequence[Optional[Num]]: """ Get all current outputs of this operation, if available. See Also -------- current_output """ raise NotImplementedError @abstractmethod def evaluate_outputs( self, input_values: Sequence[Num], results: Optional[MutableResultMap] = None, delays: Optional[MutableDelayMap] = None, prefix: str = "", bits_override: Optional[int] = None, quantize: bool = True, ) -> Sequence[Num]: """ Evaluate all outputs of this operation given the input values. See evaluate_output for more information. """ raise NotImplementedError @abstractmethod def split(self) -> Iterable["Operation"]: """ Split the operation into multiple operations. If splitting is not possible, this may return a list containing only the operation itself. """ raise NotImplementedError @abstractmethod def to_sfg(self) -> "SFG": """ Convert the operation into its corresponding SFG. If the operation is composed by multiple operations, the operation will be split. """ raise NotImplementedError @abstractmethod def inputs_required_for_output(self, output_index: int) -> Iterable[int]: """ Get the input indices of all inputs in this operation whose values are required in order to evaluate the output at the given output index. """ raise NotImplementedError @abstractmethod def quantize_input(self, index: int, value: Num, bits: int) -> Num: """ Quantize the value to be used as input at the given index to a certain bit length. """ raise NotImplementedError @property @abstractmethod def latency(self) -> int: """ Get the latency of the operation, which is the longest time it takes from one of the operations inputport to one of the operations outputport. """ raise NotImplementedError @property @abstractmethod def latency_offsets(self) -> Dict[str, Optional[int]]: """ Get a dictionary with all the operations ports latency-offsets. """ raise NotImplementedError @abstractmethod def set_latency(self, latency: int) -> None: """ Sets the latency of the operation to the specified integer value. This is done by setting the latency-offsets of operations input ports to 0 and the latency-offsets of the operations output ports to the specified value. The latency cannot be a negative integer. """ raise NotImplementedError @abstractmethod def set_latency_offsets(self, latency_offsets: Dict[str, int]) -> None: """ Sets the latency-offsets for the operations ports specified in the latency_offsets dictionary. The latency offsets dictionary should be {'in0': 2, 'out1': 4} if you want to set the latency offset for the inport port with index 0 to 2, and the latency offset of the output port with index 1 to 4. """ raise NotImplementedError @property @abstractmethod def execution_time(self) -> Optional[int]: """ Get the execution time of the operation. This is the time it takes before the processing element implementing the operation can be reused for starting another operation. """ raise NotImplementedError @execution_time.setter @abstractmethod def execution_time(self, latency: Optional[int]) -> None: """ Sets the execution time of the operation to the specified integer value. The execution time cannot be a negative integer. """ raise NotImplementedError @abstractmethod def get_plot_coordinates( self, ) -> Tuple[Tuple[Tuple[float, float], ...], Tuple[Tuple[float, float], ...]]: """ Return a tuple containing coordinates for the two polygons outlining the latency and execution time of the operation. The polygons are corresponding to a start time of 0 and are of height 1. """ raise NotImplementedError @abstractmethod def get_input_coordinates( self, ) -> Tuple[Tuple[float, float], ...]: """ Return coordinates for inputs. These maps to the polygons and are corresponding to a start time of 0 and height 1. See Also -------- get_output_coordinates """ raise NotImplementedError @abstractmethod def get_output_coordinates( self, ) -> Tuple[Tuple[float, float], ...]: """ Return coordinates for outputs. These maps to the polygons and are corresponding to a start time of 0 and height 1. See Also -------- get_input_coordinates """ raise NotImplementedError @property @abstractmethod def source(self) -> OutputPort: """ Return the OutputPort if there is only one output port. If not, raise a TypeError. """ raise NotImplementedError @property @abstractmethod def destination(self) -> InputPort: """ Return the InputPort if there is only one input port. If not, raise a TypeError. """ raise NotImplementedError @abstractmethod def _increase_time_resolution(self, factor: int) -> None: raise NotImplementedError @abstractmethod def _decrease_time_resolution(self, factor: int) -> None: raise NotImplementedError @abstractmethod def _check_all_latencies_set(self) -> None: raise NotImplementedError @property @abstractmethod def is_linear(self) -> bool: """ Return True if the operation is linear. """ raise NotImplementedError @property @abstractmethod def is_constant(self) -> bool: """ Return True if the output of the operation is constant. """ raise NotImplementedError class AbstractOperation(Operation, AbstractGraphComponent): """ Generic abstract operation base class. Concrete operations should normally derive from this to get the default behavior. """ _input_ports: List[InputPort] _output_ports: List[OutputPort] _execution_time: Union[int, None] = None def __init__( self, input_count: int, output_count: int, name: Name = Name(""), input_sources: Optional[Sequence[Optional[SignalSourceProvider]]] = None, latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """ Construct an operation with the given input/output count. A list of input sources may be specified to automatically connect to the input ports. If provided, the number of sources must match the number of inputs. The latency offsets may also be specified to be initialized. """ super().__init__(Name(name)) self._input_ports = [InputPort(self, i) for i in range(input_count)] self._output_ports = [OutputPort(self, i) for i in range(output_count)] # Connect given input sources, if any. if input_sources is not None: source_count = len(input_sources) if source_count != input_count: raise ValueError( "Wrong number of input sources supplied to Operation" f" (expected {input_count}, got {source_count})" ) for i, src in enumerate(input_sources): if src is not None: if isinstance(src, Signal): # Already existing signal src.set_destination(self._input_ports[i]) else: self._input_ports[i].connect(src.source) # Set specific latency_offsets if latency_offsets is not None: self.set_latency_offsets(latency_offsets) if latency is not None: # Set the latency for all ports initially. if latency < 0: raise ValueError("Latency cannot be negative") for inp in self.inputs: if inp.latency_offset is None: inp.latency_offset = 0 for output in self.outputs: if output.latency_offset is None: output.latency_offset = latency self._execution_time = execution_time @overload @abstractmethod def evaluate( self, *inputs: Operation ) -> List[Operation]: # pylint: disable=arguments-differ ... @overload @abstractmethod def evaluate(self, *inputs: Num) -> List[Num]: # pylint: disable=arguments-differ ... @abstractmethod def evaluate(self, *inputs): # pylint: disable=arguments-differ """ Evaluate the operation and generate a list of output values given a list of input values. """ raise NotImplementedError def __add__(self, src: Union[SignalSourceProvider, Num]) -> "Addition": # Import here to avoid circular imports. from b_asic.core_operations import Addition, Constant if isinstance(src, Number): return Addition(self, Constant(src)) else: return Addition(self, src) def __radd__(self, src: Union[SignalSourceProvider, Num]) -> "Addition": # Import here to avoid circular imports. from b_asic.core_operations import Addition, Constant return Addition(Constant(src) if isinstance(src, Number) else src, self) def __sub__(self, src: Union[SignalSourceProvider, Num]) -> "Subtraction": # Import here to avoid circular imports. from b_asic.core_operations import Constant, Subtraction return Subtraction(self, Constant(src) if isinstance(src, Number) else src) def __rsub__(self, src: Union[SignalSourceProvider, Num]) -> "Subtraction": # Import here to avoid circular imports. from b_asic.core_operations import Constant, Subtraction return Subtraction(Constant(src) if isinstance(src, Number) else src, self) def __mul__( self, src: Union[SignalSourceProvider, Num] ) -> Union["Multiplication", "ConstantMultiplication"]: # Import here to avoid circular imports. from b_asic.core_operations import ConstantMultiplication, Multiplication return ( ConstantMultiplication(src, self) if isinstance(src, Number) else Multiplication(self, src) ) def __rmul__( self, src: Union[SignalSourceProvider, Num] ) -> Union["Multiplication", "ConstantMultiplication"]: # Import here to avoid circular imports. from b_asic.core_operations import ConstantMultiplication, Multiplication return ( ConstantMultiplication(src, self) if isinstance(src, Number) else Multiplication(src, self) ) def __truediv__(self, src: Union[SignalSourceProvider, Num]) -> "Division": # Import here to avoid circular imports. from b_asic.core_operations import Constant, Division return Division(self, Constant(src) if isinstance(src, Number) else src) def __rtruediv__( self, src: Union[SignalSourceProvider, Num] ) -> Union["Division", "Reciprocal"]: # Import here to avoid circular imports. from b_asic.core_operations import Constant, Division, Reciprocal if isinstance(src, Number): if src == 1: return Reciprocal(self) else: return Division(Constant(src), self) return Division(src, self) def __lshift__(self, src: SignalSourceProvider) -> Signal: if self.input_count != 1: diff = "more" if self.input_count > 1 else "less" raise TypeError( f"{self.__class__.__name__} cannot be used as a destination" f" because it has {diff} than 1 input" ) return self.input(0).connect(src) def __str__(self) -> str: """Get a string representation of this operation.""" inputs_dict: Dict[int, Union[List[GraphID], str]] = {} for i, inport in enumerate(self.inputs): if inport.signal_count == 0: inputs_dict[i] = "-" break dict_ele = [] for signal in inport.signals: if signal.source: if signal.source.operation.graph_id: dict_ele.append(signal.source.operation.graph_id) else: dict_ele.append(GraphID("no_id")) else: if signal.graph_id: dict_ele.append(signal.graph_id) else: dict_ele.append(GraphID("no_id")) inputs_dict[i] = dict_ele outputs_dict: Dict[int, Union[List[GraphID], str]] = {} for i, outport in enumerate(self.outputs): if outport.signal_count == 0: outputs_dict[i] = "-" break dict_ele = [] for signal in outport.signals: if signal.destination: if signal.destination.operation.graph_id: dict_ele.append(signal.destination.operation.graph_id) else: dict_ele.append(GraphID("no_id")) else: if signal.graph_id: dict_ele.append(signal.graph_id) else: dict_ele.append(GraphID("no_id")) outputs_dict[i] = dict_ele return ( super().__str__() + f", \tinputs: {str(inputs_dict)}, \toutputs: {str(outputs_dict)}" ) @property def input_count(self) -> int: return len(self._input_ports) @property def output_count(self) -> int: return len(self._output_ports) def input(self, index: int) -> InputPort: return self._input_ports[index] def output(self, index: int) -> OutputPort: return self._output_ports[index] @property def inputs(self) -> Sequence[InputPort]: return self._input_ports @property def outputs(self) -> Sequence[OutputPort]: return self._output_ports @property def input_signals(self) -> Sequence[Signal]: result = [] for p in self.inputs: for s in p.signals: result.append(s) return result @property def output_signals(self) -> Sequence[Signal]: result = [] for p in self.outputs: for s in p.signals: result.append(s) return result def key(self, index: int, prefix: str = "") -> ResultKey: key = prefix if self.output_count != 1: if key: key += "." key += str(index) elif not key: key = str(index) return ResultKey(key) def current_output( self, index: int, delays: Optional[DelayMap] = None, prefix: str = "" ) -> Optional[Num]: return None def evaluate_output( self, index: int, input_values: Sequence[Num], results: Optional[MutableResultMap] = None, delays: Optional[MutableDelayMap] = None, prefix: str = "", bits_override: Optional[int] = None, quantize: bool = True, ) -> Num: if index < 0 or index >= self.output_count: raise IndexError( "Output index out of range (expected" f" 0-{self.output_count - 1}, got {index})" ) if len(input_values) != self.input_count: raise ValueError( "Wrong number of input values supplied to operation (expected" f" {self.input_count}, got {len(input_values)})" ) values = self.evaluate( *( self.quantize_inputs(input_values, bits_override) if quantize else input_values ) ) if isinstance(values, collections.abc.Sequence): if len(values) != self.output_count: raise RuntimeError( "Operation evaluated to incorrect number of outputs" f" (expected {self.output_count}, got {len(values)})" ) elif isinstance(values, Number): if self.output_count != 1: raise RuntimeError( "Operation evaluated to incorrect number of outputs" f" (expected {self.output_count}, got 1)" ) values = (values,) else: raise RuntimeError( "Operation evaluated to invalid type (expected" f" Sequence/Number, got {values.__class__.__name__})" ) if results is not None: for i in range(self.output_count): results[self.key(i, prefix)] = values[i] return values[index] def current_outputs( self, delays: Optional[DelayMap] = None, prefix: str = "" ) -> Sequence[Optional[Num]]: return [ self.current_output(i, delays, prefix) for i in range(self.output_count) ] def evaluate_outputs( self, input_values: Sequence[Num], results: Optional[MutableResultMap] = None, delays: Optional[MutableDelayMap] = None, prefix: str = "", bits_override: Optional[int] = None, quantize: bool = True, ) -> Sequence[Num]: return [ self.evaluate_output( i, input_values, results, delays, prefix, bits_override, quantize, ) for i in range(self.output_count) ] def split(self) -> Iterable[Operation]: # Import here to avoid circular imports. from b_asic.special_operations import Input result = self.evaluate(*([Input()] * self.input_count)) if isinstance(result, collections.abc.Sequence) and all( isinstance(e, Operation) for e in result ): return cast(List[Operation], result) return [self] def to_sfg(self) -> "SFG": # Import here to avoid circular imports. from b_asic.signal_flow_graph import SFG from b_asic.special_operations import Input, Output inputs = [Input() for _ in range(self.input_count)] try: last_operations = self.evaluate(*inputs) if isinstance(last_operations, Operation): last_operations = [last_operations] outputs = [Output(o) for o in last_operations] except TypeError: operation_copy: Operation = cast(Operation, self.copy()) inputs = [] for i in range(self.input_count): input_ = Input() operation_copy.input(i).connect(input_) inputs.append(input_) outputs = [Output(operation_copy)] return SFG(inputs=inputs, outputs=outputs) def copy(self, *args, **kwargs) -> GraphComponent: new_component: Operation = cast(Operation, super().copy(*args, **kwargs)) for i, _input in enumerate(self.inputs): new_component.input(i).latency_offset = _input.latency_offset for i, output in enumerate(self.outputs): new_component.output(i).latency_offset = output.latency_offset new_component.execution_time = self._execution_time return new_component def inputs_required_for_output(self, output_index: int) -> Iterable[int]: if output_index < 0 or output_index >= self.output_count: raise IndexError( "Output index out of range (expected" f" 0-{self.output_count - 1}, got {output_index})" ) # By default, assume each output depends on all inputs. return list(range(self.input_count)) @property def neighbors(self) -> Iterable[GraphComponent]: return list(self.input_signals) + list(self.output_signals) @property def preceding_operations(self) -> Iterable[Operation]: """ Return an Iterable of all Operations that are connected to this Operations input ports. """ return [ signal.source.operation for signal in self.input_signals if signal.source ] @property def subsequent_operations(self) -> Iterable[Operation]: """ Return an Iterable of all Operations that are connected to this Operations output ports. """ return [ signal.destination.operation for signal in self.output_signals if signal.destination ] @property def source(self) -> OutputPort: if self.output_count != 1: diff = "more" if self.output_count > 1 else "less" raise TypeError( f"{self.__class__.__name__} cannot be used as an input source" f" because it has {diff} than one output" ) return self.output(0) @property def destination(self) -> InputPort: if self.input_count != 1: diff = "more" if self.input_count > 1 else "less" raise TypeError( f"{self.__class__.__name__} cannot be used as an output" f" destination because it has {diff} than one input" ) return self.input(0) def quantize_input(self, index: int, value: Num, bits: int) -> Num: if isinstance(value, (float, int)): b = 2**bits return round((value + 1) * b % (2 * b) - b) / b else: raise TypeError def quantize_inputs( self, input_values: Sequence[Num], bits_override: Optional[int] = None, ) -> Sequence[Num]: """ Quantize the values to be used as inputs to the bit lengths specified by the respective signals connected to each input. """ args = [] for i, input_port in enumerate(self.inputs): value = input_values[i] if bits_override is None and input_port.signal_count >= 1: input_port.signals[0].bits if bits_override is not None: if isinstance(value, complex): raise TypeError( "Complex value cannot be quantized to {bits} bits as" " requested by the signal connected to input #{i}" ) value = self.quantize_input(i, value, bits_override) args.append(value) return args @property def latency(self) -> int: if None in [inp.latency_offset for inp in self.inputs] or None in [ output.latency_offset for output in self.outputs ]: raise ValueError( "All native offsets have to set to a non-negative value to" " calculate the latency." ) return max( ( (cast(int, output.latency_offset) - cast(int, input_.latency_offset)) for output, input_ in it.product(self.outputs, self.inputs) ) ) @property def latency_offsets(self) -> Dict[str, Optional[int]]: latency_offsets = {} for i, input_ in enumerate(self.inputs): latency_offsets[f"in{i}"] = input_.latency_offset for i, output in enumerate(self.outputs): latency_offsets[f"out{i}"] = output.latency_offset return latency_offsets def _check_all_latencies_set(self) -> None: """ Raises an exception if an input or output does not have a latency offset. """ self.input_latency_offsets() self.output_latency_offsets() def input_latency_offsets(self) -> List[int]: latency_offsets = [i.latency_offset for i in self.inputs] if any(val is None for val in latency_offsets): missing = [ i for (i, latency) in enumerate(latency_offsets) if latency is None ] raise ValueError(f"Missing latencies for input(s) {missing}") return cast(List[int], latency_offsets) def output_latency_offsets(self) -> List[int]: latency_offsets = [i.latency_offset for i in self.outputs] if any(val is None for val in latency_offsets): missing = [ i for (i, latency) in enumerate(latency_offsets) if latency is None ] raise ValueError(f"Missing latencies for output(s) {missing}") return cast(List[int], latency_offsets) def set_latency(self, latency: int) -> None: if latency < 0: raise ValueError("Latency cannot be negative") for inport in self.inputs: inport.latency_offset = 0 for outport in self.outputs: outport.latency_offset = latency def set_latency_offsets(self, latency_offsets: Dict[str, int]) -> None: for port_str, latency_offset in latency_offsets.items(): port_str = port_str.lower() if port_str.startswith("in"): index_str = port_str[2:] if not index_str.isdigit(): raise ValueError( "Incorrectly formatted index in string, expected 'in'" f" + index, got: {port_str!r}" ) self.input(int(index_str)).latency_offset = latency_offset elif port_str.startswith("out"): index_str = port_str[3:] if not index_str.isdigit(): raise ValueError( "Incorrectly formatted index in string, expected" f" 'out' + index, got: {port_str!r}" ) self.output(int(index_str)).latency_offset = latency_offset else: raise ValueError( "Incorrectly formatted string, expected 'in' + index or" f" 'out' + index, got: {port_str!r}" ) @property def execution_time(self) -> Optional[int]: """Execution time of operation.""" return self._execution_time @execution_time.setter def execution_time(self, execution_time: int) -> None: if execution_time is not None and execution_time < 0: raise ValueError("Execution time cannot be negative") self._execution_time = execution_time def _increase_time_resolution(self, factor: int) -> None: if self._execution_time is not None: self._execution_time *= factor for port in [*self.inputs, *self.outputs]: if port.latency_offset is not None: port.latency_offset *= factor def _decrease_time_resolution(self, factor: int) -> None: if self._execution_time is not None: self._execution_time = self._execution_time // factor for port in [*self.inputs, *self.outputs]: if port.latency_offset is not None: port.latency_offset = port.latency_offset // factor def get_plot_coordinates( self, ) -> Tuple[Tuple[Tuple[float, float], ...], Tuple[Tuple[float, float], ...]]: # Doc-string inherited return ( self._get_plot_coordinates_for_latency(), self._get_plot_coordinates_for_execution_time(), ) def _get_plot_coordinates_for_execution_time( self, ) -> Tuple[Tuple[float, float], ...]: # Always a rectangle, but easier if coordinates are returned execution_time = self._execution_time # Copy for type checking if execution_time is None: return tuple() return ( (0, 0), (0, 1), (execution_time, 1), (execution_time, 0), (0, 0), ) def _get_plot_coordinates_for_latency( self, ) -> Tuple[Tuple[float, float], ...]: # Points for latency polygon latency = [] input_latencies = self.input_latency_offsets() output_latencies = self.output_latency_offsets() # Remember starting point start_point = (input_latencies[0], 0.0) num_in = self.input_count latency.append(start_point) for k in range(1, num_in): latency.append((input_latencies[k - 1], k / num_in)) latency.append((input_latencies[k], k / num_in)) latency.append((input_latencies[num_in - 1], 1)) num_out = self.output_count latency.append((output_latencies[num_out - 1], 1)) for k in reversed(range(1, num_out)): latency.append((output_latencies[k], k / num_out)) latency.append((output_latencies[k - 1], k / num_out)) latency.append((output_latencies[0], 0.0)) # Close the polygon latency.append(start_point) return tuple(latency) def get_input_coordinates(self) -> Tuple[Tuple[float, float], ...]: # doc-string inherited num_in = self.input_count return tuple( ( self.input_latency_offsets()[k], (1 + 2 * k) / (2 * num_in), ) for k in range(num_in) ) def get_output_coordinates(self) -> Tuple[Tuple[float, float], ...]: # doc-string inherited num_out = self.output_count return tuple( ( self.output_latency_offsets()[k], (1 + 2 * k) / (2 * num_out), ) for k in range(num_out) ) @property def is_linear(self) -> bool: if self.is_constant: return True return False @property def is_constant(self) -> bool: return all( input_.connected_source.operation.is_constant for input_ in self.inputs )