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Diffraction limited systems

• Due to the wave nature of light, even when 
various lens effects are eliminated, light from 
a single 3D point cannot be focused to an 
arbitrarily small point if it has passed an 
aperture

• For coherent light:
– Huygens' principle: treat the incoming light as a 

set of point light sources
– Gives diffraction pattern at the image plane
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Diffraction limited systems
• Consider an ideal lens with aperture size  D:

D

• Because of diffraction, a point source infinitely far away (a 
planar wave) will not be focused onto a single point in the 
image plane. How come?

D
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A lens produces the Fourier
transform!

f

x

x’

lens

focal plane

Object
g(x’)

G(x)

§ We will show that G(x) is the 
Fouriertransform of g(x’)
(apart from a phase factor)

§ Using Huygens’ wave
model for light.

Plane wave
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Deriving the lens transform
• Add the light contribution from each point x’ entering the lens to each

point x in the focal plane, taking magnitude A and phase f into account.

• Magnitude is given by the object density g(x’). Phase depends on the 

optical path length. Compute this separably for the lens and the path from 

the lens to the focal plane

• Math trick: represent each light contribution by a complex number Aejf

where A is the magnitude and f is the phase relative to a common 

reference.

• 1D-analysis (can easily be extended to 2D)
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Path length through the lens
Simplifications
• The lens is plano-convex and thin
• Paraxial approximation
• Coherent light
• Inscribe the lens within a virtual rectangular box 

and apply Huygens’ principle on the light coming 
out from this box.

Where we have used x’ << R (paraxial 
approximation)

Incoming light ray

∆ 𝑥′ = ∆! − 𝑅 − 𝑅" − 𝑥#" ≈ ∆! −
𝑥′"

2𝑅

Assume that the light travels slower by a factor n
(refractive index) in the lens than in air and exits
at the same height (x’) since the lens is thin.

The ”optical path length” travelled within the 
virtual box will then be

𝛿 𝑥′ = 𝑛∆ 𝑥! + ∆" − ∆ 𝑥! = 𝑛∆" − 𝑛 − 1
𝑥!#

2𝑅
Applying ”Lensmakers Formula” 1/f = (n-1)/R
gives:

𝛿 𝑥′ = 𝑛∆! −
𝑥′"

2𝑓
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The phase transform for the lens

x’

𝛿 𝑥′ = 𝑛∆! −
𝑥′"

2𝑓

The optical pathlength 𝛿 𝑥′ corresponds to the 
phase shift:

Δ𝜙 =
2𝜋
𝜆
𝛿 𝑥′

Inserting

and disregarding the fixed delay 𝑛∆! gives the ”phase transform”:

𝑇$ 𝑥# = 𝑒%&
$
%&'#

%
where 𝑘 =

2𝜋
𝜆

TSBB21, Lecture A, Klas Nordberg/R. Forchheimer, LiU



The phase transform from lens to 
focal plane

f

x

x’

lens

focal planeDf(x,x’)

Object
g(x’)

G(x)

∆! 𝑥, 𝑥′ = 𝑥" − 𝑥 # + 𝑓# − 𝑓

≈
𝑥" − 𝑥 #

2𝑓
(again using the paraxial
approximation)

Thus 𝑇!= 𝑒$
!
"# %$&%

"
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Putting it all together

𝐺(𝑥) = D
%(

(

𝑔(𝑥#) F 𝑇$ F 𝑇)𝑑𝑥′ = D
%(

(

𝑔 𝑥# F 𝑒%&
*
")'

'%

F 𝑒&
*
") ''%' %

𝑑𝑥# =

= 𝑒&
*
")'

%
D
%(

(

𝑔(𝑥#)𝑒%&
*
)''

'
𝑑𝑥′

Normalise according to u = x/(lf)

𝑮 𝑢 = 𝑒&+,)-% D
%(

(

𝑔(𝑥#)𝑒%&"+-''𝑑𝑥′

This is the Fourier Transform multiplied by a phase factor (of magnitude 1)!

* See the course web page how to get rid of the phase factor by moving the object further away from the lens.
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The effect of the aperture
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D D

The aperture can be viewed as an 
input image: 𝑔 𝑥" = 𝑟𝑒𝑐𝑡(𝑥"/𝐷)

The lens produces:

𝐺 𝑢 = 𝑒$'(!)" *+,('.))
'.)

f
A screen at the image plane will show 

the (diffraction) pattern: 
*+,('.))
'.)

#

𝐺 𝑢

Any projected image will be convolved (blurred) by G(u)!



Diffraction limited systems
• *+,(.)

.
is termed the “sinc” function

• This phenomena generalizes to 2D:
– The resulting wave-function 𝐺 𝑢, 𝑣 is the 2D FT of the incoming 

spatial amplitude 𝑔 𝑥′, 𝑦′
– Example: a circular aperture of diameter D

(Input amplitude normalized to 1/fl,   𝑟 = 𝑥′0 + 𝑦′0, 𝜌 = 𝑢0 + 𝑣0)

First order Bessel 
function

1.22𝑔 𝑟 =
1
𝑓𝜆 𝑟𝑒𝑐𝑡

𝑟
𝐷

𝐺 𝜌 =
𝐽( ⁄𝜋𝜌𝐷 𝑓𝜆)
𝜋𝜌𝐷/𝑓𝜆)

𝜌𝐷
𝑓𝜆

G



The Fourier transform
of a circular disc

• The circular box 𝑔(𝑟) and its Fourier transform 𝐺 𝜌
– 𝐺 𝜌 is sometimes called the jinc function because of its similarities with 

the sinc function.
– To make the image visible, we need to put a screen in the image plane. 

The screen will only produce the intensity (the square of the magnitude), 
not the phase of the light (and not negative light)! 

– G	2(r) is called the Airy pattern. This means that a point-source at infinite 
distance (planar wave front) will give rise to an Airy pattern when 
projected by a lens through the aperture.
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The circular box and
its Fourier transform

𝑔 𝑟
𝐺 𝜌

𝑦 𝑥
𝑣 𝑢



The Fourier transform and the 
squared Fourier transform

𝐺? 𝜌

𝑣 𝑢

𝐺 𝜌

𝑣 𝑢



The Airy disk
The image of a point-source for a diffraction-limited 
optical system is called Airy pattern. The central part is 
called the Airy disk.
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Airy pattern: The image of a 
focussed point-source becomes a 
diffraction pattern consisting of 
concentric light and dark circles.

The distance from center to first 
dark ring is 1.22 fl/D.

The light intensity is given by the 
square of the jinc-function.



Resolution limit
• The smallest resolvable distance, Dx, between two 

point-sources in the image plane is given by

lens focal length

lens diameter

light wavelength

Distance to first zero point in Ã(x)
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Resolution limit
Conclusions:
• The image cannot have a better resolution than Dx
• No need to measure/digitise the image with higher 

resolution than Dx !

• Be aware of cameras with high pixel resolution and 
high diffraction (e.g. small aperture)
– Image resolution is not defined by number of pixels in the 

camera, rather by the diffraction limit.
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Point spread function (PSF)
• PSF is a generalization of the point light source response

– Diffraction: results in the Airy disk function
– Out-of-focus blur: The out-of-focus PSF takes the shape of the camera aperture. 

For a circular aperture, the PSF is a disk, which is sometimes referred to as the 
circle of confusion.

• There are also other factors that contribute to the point spread function
– Atmospheric turbulence
– Optical aberrations
– Motion
– etc.

• The fact that the out-of-focus PSF takes the shape of the camera 
aperture is utilized for coded apertures, see the lecture on Specialized  
cameras.

p. 18
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Optical transfer function (OTF)
• The optical transfer function (OTF) of an optical system 

specifies how different spatial frequencies are handled by the 
system.

• OTF is the Fourier transform of the PSF
• For an ideal lens system, in focus, the OTF is the Fourier 

transform of the Airy disk.
• Summary and observation

– 1) The Fourier transform of the circular box is a jinc function.
– 2) Similarly, the Fourier transform of the jinc function is a circular box.
– 3) The Airy disk is the jinc function multiplied with itself.
– 2) and 3) gives that the OTF, the Fourier transform of the Airy disk, is a 

circular box convolved with itself!
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Depth of field
“Skärpedjup” in Swedish

• The lens gives a focused image
– Points that are off the object plane become blurred 

proportional to the displacement from the object plane

• Due to the resolution limit, it makes sense to accept 
blur in the order of Dx
– This blur will be there anyway due to diffraction

• Depth of field d is the displacement along the optical 
axis from the object plane that gives  blur ≤ Dx
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Depth of field
p. 21

aperture

focus

focus



Depth of field

Dx

Depth of field (d)

a

D

b

1
a
+
1
b
=
1
fL

• Insert a’ = a - d/2 to get the “horizontal blur” (b’-b)
• Relate “horizontal blur” to vertical blur Dx

b’a’

lens



Depth of field
• For a camera where a < ∞, an approximation 

(assuming d << a) for d is

a = distance from lens to object plane
fL = lens focal length
D = lens diameter
Dx = required image plane resolution
d = depth of field

d ≈ 2Δx a(a− fL )
DfL



Depth of field

• For a lens where a = ∞, points that are further 
away than dmin are blurred less than Dx where

dmin =
fLD
4Δx
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The F-number
• fL/D is the F-number of the lens or lens system

• Example
– A typical F number of a camera = 8
– Blue light = 420 nm wavelength
– Airy disk radius Dx = 1.22 lF ≈ 4 µm

• For a lens with fL = 15 mm we get
– d ≈ 0.6 m at a = 1.5 m
– dmin ≈ 1.8 m at a = ∞

This means that the 
depth of field is within 
a manageable range
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Lens distortion

• A lens or a lens system can never map straight 
lines in the 3D scene exactly to straight lines 
in the image plane

• Depending on the lens type, a square pattern 
will typically appear like a barrel or a 
pincushion
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Lens distortion

Barrel distortion Pincushion distortionNo distortion
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• This effect is called lens distortion (geometric distortion) and 
can, in the simplest case, be modeled as a
radial distortion

(x, y) = correct image coordinate
(x, y) = r (cos q, sin q)
(x’, y’) = observed image coordinate
(x’, y’) = h(r) (cos q, sin q)

• The observed positions of points in the image are displaced in 
the radial direction relative the image center as described by 
the pinhole camera model.

Radial lens distortion

Observed point Position according 
to the pinhole 
camera model

x

y
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Radial lens distortion

• h is approximately a linear function with some 
non-linear deviation, e.g.

• Once modeled, we can compensate for the 
distortion

The deviation from a
linear function usually

grows with r



Vignetting

• Even if the light that enters the camera is 
constant in all directions, the image plane will 
receive different amount of illumination

• This effect is called vignetting
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Vignetting

• Sometimes used as a photographic effect
• But is usually unwanted
• Can be compensated for in digital cameras

Image from a digital camera 
showing vignetting effect



Mechanical vignetting B

ALight from a larger solid angle 
emitted from point A is focused here

Light from a smaller solid angle 
emitted from point B is focused here
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The cos4 law – pinhole camera
• We can see the pinhole as a light source in the form of a 

small area that illuminates the image plane

– The flux density decreases with the square of the distance 
to the light source: cos2 a

– The effective area of the detector relative to the pinhole 
varies as cos a

– The effective area of the pinhole relative to the detector 
varies as cos a

a



• This effect exists also in lens-based cameras
• This means that, in general, there is an 
attenuation of the image towards the edges 
of the image, approximately according to 
cos4a

• Can be compensated for in a digital camera

The cos4 law
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Chromatic aberration

• The refraction index of matter (lenses) is 
wavelength dependent
– Example: a prism can decompose the light into its 

spectrum

– A ray of white light is decomposed into rays of 
different colors that intersect the image plane at 
different points



Chromatic aberration

Sometimes clearly 
visible if you look at the 
edges.
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End of image formation chapter
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