TSBBO09 Image Sensors "
Camera calibration 2, Lecture E

o Camera calibration 2
» Zhang's method for 3D camera calibration
= Radial distortion
= OpenCV:s extended version of Zhang’s method
= Where is the camera center in a real lens?
o Literature

= "A flexible new technique for camera calibration” by Zhengyou
Zhang, Microsoft Research. Available as short article or long report.

= ”"Short about camera geometry and camera calibration”

by Maria Magnusson
o Literature

= Parts of ...
”Introduction to Representations and Estimation in Geometry”
(IREG) by Klas Nordberg

= Parts of ...
”"Mathematical Toolbox for Studies in Visual Computation at
Linkdping University” by Klas Nordberg
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Camera calibration, general

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linkdping University

o Photogrammetry
m A 3D calibration object is manufactured with good
precision.
Disadvantage: expensive and complicated.
= A 2D calibration object is manufactured with good
precision. It can be a plane with squares. It is shown for
the camera in different orientations. Zhang’s approach.
Advantage: cheap and simple. Lab task!
o Self-calibration
m The camera is moving in a static scene.
Advantage: Flexible.
Disadvantage: The results are not always reliable.

See also Zhang, section 1: Motivations
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3D Camera calibration
according to Zhang
‘A, R, and t in C=A[Rt] can be determined individually ‘

] Calibration procedure, see Zhang: Section 3.3 \

o 1) Print a pattern and attach it to a planar surface.

o 2) Take a few images of the model plane under different orientations
by moving the plane. Fig. 1.

o 3) Detect feature points in the images and relate them to points in the
world.

o 4) Determine n C-matrices by calibrating n homographies. Determine A
and [Rt] from the n C-matrices.

o 5) Estimate the coefficients of the lens radial distortion from the linear
least square solution of an equation system.

o 6) Refine all parameters, including the lens radial distortion parameters
in a non-linear minimization algorithm.

o 5)and 6) are not included in the lab “Camera Calibration 17, but in the
lab “Camera Calibration 2”.

1,2) Hold the pattern in some differ- .
ent orientations and take images

Similar to
Fig. 1
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3) Detect interesting points in the images
and relate them to points in the world

HEMN (u;, v;) corresponds to (X;,Y;)

u;, vj ) corresponds to (X;,Y;
jr Vj jr 1

From n calibration planes we can determine
n C-matrices by calibrating 7 homographies
using the technique described in the previous lecture.
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4) Determine A and [Rt] g5
from the n C-matrices (Magnusson)

A 4

s(uv, DT =A[Rt]- (X,Y,Z,1)T=A[r; 1, 13 t]-(X,Y,Z 1)

Note that: 1 Tiz Tz b
r,, r,and r; are [Rt]=[r1 r; 13 t]=(121 122 T23 ¢t

are orthonormal! T31 T3z Taz U3

For simplicity, assume that the planar pattern is at Z=0. ‘

swy, DT =A[r, 1, 13 t]-(X,7,0)7
=Alrp b, - XYy, DT=C-(X,Y, D7

Ty Tz b €1 Cip Cg3
Alry 1 tJ=A(rm T2 t]=(C G (3

31 T3z t3 (31 C32 Cs3
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4) Determine A and [Rt]
from the n C-matrices

C can only be determined up to a scale factor.
Zhang set C;; = 1 and introduces A as scale factor.

Ty Tz 4 €1 Gy (i3
AA 121 T2 t2)|=(C Gy (i3

731 T3z i3 C3; C3p 1

</1~A- 1 rz t=[h; hy h;] Before Eq. (3)

Note that Two important constraints:
r, It
are gone! h{ AT A h; =0 Eq. 3)

Proof on next slide! ||hf A" A" h; =h] A" A" h, || Eq. (4)

Proof of the constraints
(3) and (4)
Proof a{_@ ancl @
h!: ?‘Arl => {riz?\_lA_l h\
he= A Al = A" A" ha
O=rierp =c'ry =(XA W24 he =
=X2hT(ATTA he =
L =llrl?=ren =nTr = X MATA™ hi}:>

1=llnlt=nren ='r =A% hy ATA  ha




4) Determine A and [R{] "
from the n C-matrices, cont.

‘ Form a B-matrix and a b-vector: ‘

4) Determine A and [R{] "
from the n C-matrices, cont.

Bi1 Biz Bz
B=ATA'= |B;, B,, Bys|={insertand calculate} =
Biz Bz B
i _r VoY — UofB
a? azp azp
Y r: 1 Yoy —ueB) o
a?pB a2p? " B2 a2p? B2
VoY — Upf _V(VOV —uf) _ Yo (voy — uoB)? " ﬁ 1
a2 a?p? B2 a2 Bz
Eq. (5) b = [Byy, Byy, Byy, Bis, Bas, Bssl” || Eq. (6)

Set: hirhjs
This is valid: hirhjz + hizhjs
Vi = hiZhjZ
hyy hyy hay Y |hizhjs + highys
[h1 hz h3] = h12 hzz h32 hi3h]’2 +hi2hj3
hiz hyz  hss hishjs
Then: | |hi B h;=vj;b || Eq.(7) Chedkon
next slide!

T
Viz

[(Vu —vz)" b=0 Eqg. (8)

4) Determine A and [R{] "
from the n C-matrices, cont.

T

v.
(v11 _12"22)T b=0 Eq. (8)

® ondk @ and ATAT D (T B e =0
( th B hi_hz-rth)
@
=?( vi2' b ) =0 !
(vo-Va2'b .

4) Determine A and [R{] "
from the n C-matrices, cont.

2x6-matrix:

T
[ Vi2
(Vi1 — sz)T

boo || EG(8)

Pile nEqg. (8) on
top of eachother

‘2nx6-matrix:‘ |Vb=0| Eq. (9)

This is a homogenous equation system, which can be solved
by using SVD-technique, see next lecture,

“Short about camera geometry...” from previous lecture or
“Mathematical Toolbox ...”




4) Determine A and [Rt] "
from the n C-matrices, cont.

When b is known, B is simply obtained.
The matrix B-matrix is estimated up to a scale factor:

B=21A"TA"1
‘The parameters a, B, v, Ug, Vo can be extracted from B: ‘

vy = (B12B13 — B11B33)/(B11B2; — B1,”)
A = B33 — [By3* + vo(B12B13 — B11B53)|/B1s

4) Determine A and [Rt] "
from the n C-matrices, cont.

Note: It is slightly better to solve A from B

by using Cholesky decomposition (see Mathematical Toolbox).
Then the parameters a, B, v, Uy, V, can be directly obtained
from A and they will probably be more accurate.

=./1/B
@ =+A/B Below Eq. (9)
= \//1311/(311322 — By,?)
Y= _Blza’zﬁ//1 i
= o 5 A is now
Uy =yvo/a — Byza®/a determined!
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How many calibration
planes are needed?

o One calibration plane gives one calibration matrix C.

o One calibration matrix C gives one Eq.(8) with 2
equations.

o There are 5 unknowns in A.
If the skew y=0, there are 4 unknowns in A.

o How many calibration planes, at least, are needed to
determine A?

u]

3 planes are needed.
2 planes are needed if y=0.

u]

C=A[Rt] is determined up to 8 parameters by 1
calibration plane. There are 6 degrees of freedom in
[Rt], 3 rotation angles and 3 translation directions.
Consequently 8-6=2 equations are obtained for
solving A from one calibration plane.

4) Determine A and [Rt] "
from the n C-matrices, cont.

See before Eq. (3)

A-A-[rp 1, tJ=[h; h; h;]

When A is known, [Rt] is simply obtained as:

Observe

r =1A""hy . that Zhang
r, = AA 'h, _ 1 _

n=nxr VI AT AT T AT,

t=1A"1h;

This is written a bit below Eq. (9)




5) Radial distortion

o Radial distortion is the most common

AT T TN
Undis- | / \ |Barrel Pincush-
torted |[ )| distor- ion dis-
image: \\ /’ tion: tortion:
LV
o Other types of distortion: the human eye of an

astigmatic person, fisheye-lenses, telescope

Radial distorsion can be included in the calibration procedure.
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5) Radial distortion example: Extreme
wide-angle lens gives barrel distortion

o Example from Aftonbladet: Image inside the
“frimurar” room. (Anders Bjorck, Hasse Aro and

the Swedish king are members.)
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5) Radial distortion, equations
(u,v) are the real image coordinates, as before.
Let us call the normalized image coordinates (x,y) instead of (un,vn):
T

Uu; v;
wv, DT =A- <—,—, 1> =A (Up, vy, DT =A- (x,y, DT

f'r
inner parameters: u=a-x+y-y+uy h=a-X+y-Y+up
a, B, v, uy Vo v=B3-y+1, P=0 ¥+,
undistorted image coordinates: (u, v)
distorted image coordinates: (i, ¥)
undistorted normalized image coordinates: (x, y)
distorted normalized image coordinates: (%, ¥)
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5) Radial distortion, equations

undistorted image coordinates: (u, v)
distorted image coordinates: (i, ¥)
undistorted normalized image coordinates: (x, y)
distorted normalized image coordinates: (X, y)

72 =x% + y?

coefficients of radial distortion

y=y+y- (kyr® + kor?)

‘ Proof: See next slide. ‘

{55 =x+x-(kyr? + kor?) k1 and k2 are the

=v+ v -vy) - (kar® + k)| Eq (12)

{a =u+ Ww—1up) - (kyr? + kyr®)|| EQ. (11)
1%

The center of the
radial distortion is
the same as the
principal point.
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5) Radial distortion, equations

U=aX+yy+ug u=ax+yy+ug
U =By +v, v=PFy+v,

4

aX +yy+uy=ax+yy+ug+ (ax +yy) - (kyr? + kyr?)
By +vo = By + v + (BY) - (kyr?* + kpr®)

T=u+ u—ug) - (kyr?+ kyr*)
V=v+ W—vy) - (k;r? + kor?)

"4

aX+yy =ax+yy+ (ax +yy) - (k;r? + kor*)
y=y+y-(kr? +kprt)

"4

+x - (ky7r? + kyr?)
+ y: (k1T2 + k27'4)

<=
Il
< R

Correction for radial distortion
(in the report by Zhang)
s | B
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5) Radial distortion, equations

U=u+@u—up) - (ky(x* +y?) + ko (x* +y»?) || EQ. (11)
V=v+ W —vp) - (ki (x® +y?) + kp(x* + y?)?) Eq. (12)

¥

w—up) - (2 +y3) (u—up)  (x*+y?)? [kl]_ ﬁ—u]
W—vp) (%2 4+y2) W—wvy) 2 +yD2[lk] " B —v

Given m points in 7images, we can stack all equations together
to obtain in total 2/mn equations, or in matrix form as

Dk=d, where k =[k,,k,]"

The linear least-square solution is given by:

| k= (0"p)"*D"d || EQ. (13)
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6) Refine the parameter estimation in
a non-linear minimization algorithm

Magnusson’s notation:| [$(w v, D" = ARt - (X,¥,Z, )" || Eq. (18)

Zhang's notation: L;ﬁ = A[Rt]- ’;_ Eq. (1)
Point in Point in

the image the world

Can

n m
be solved by N 2
the Levenberg-) | . . Imi; — (A Jeu ko Ro t M)]* || EQ. (14)
Marquardt i=1j=1 f

[
Projection of point M; in image i

algorithm,
Isgnonlin
in Matlab
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OpenCV:s extended version of
Zhang’'s method

o Contains a more advanced model for radial
distortion:
1+ kyr? + kor* + kgr®
T+ kar? + ksr* + kor
Ltk heprt + kgt
BEAETT kar? + ksr* + kgr®

+ 2p1xy + po(r? + 2x2)

X=x

y

+p1(r2 + 2y%) + 2pyxy

o k; and k, are Zhang'’s original coefficients for
radial distortion

O p, and p, are tangential distortion
o For barrel distortion, typically k; =0
o For pincushion distortion, typically k; < O
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Tangential distortion

o Tangential distortion occurs when the lens and the
image plane are not parallel. The tangential
distortion coefficients p; and p, model this type of
distortion.
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Tangential distortion

o A simple example:

Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensor are not parallel
Cameralens Camera lens .
Figure from
MathWorks
Vertical plane Vertical plane Doc. of
R2019b
Camera
Sensor Camera
sensor
p. 28

Alternative model for radial
distortion: The arctan model

Used in Lab exercise E: Panorama stitching

Let the image be described in polar coordinates: (7 6).
Then

arctan(rip - y)

Tout = v

y is small, e.g. y=0.001
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Where is the camera center
Degenerated configurations in a real lens?
o If the calibration plane at the second o The camera center is at EP (the entrance pupil)
position is parallel with the first position, i.e. the apparent position of the aperture.
the 2:nd homography will not give any
extra constraints
Entrance Pupil for the Pentax Super-Takumar 200mm f/4 lens
Reference: Theory of the “No-Parallax” Point in Panorama Photography
Version 1.0, February 6, 2006
Rik Littlefield (rj.littlefield @computer.org)
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Where is the camera center
in a real lens?




