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Panorama stitching
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TSBB21, Lecture 9
Panorama Stitching. Mathematical tool: SVD
o Panorama Stitching
o Mathematical tool: SVD
o Literature
m “Panorama Stitching. Supplementary Notes” by Per-Erik Forssén
m Lastin ... "Short about camera geometry and camera calibration”
by Maria Magnusson
m Parts of ... "Introduction to Representations and Estimation in
Geometry”
(IREG) by Klas Nordberg
m Parts of ... "Mathematical Toolbox for Studies in Visual
Computation at  Linkdping University” by Klas Nordberg
Maria Magnusson, CVL, Dept. of Electrical Engineering, Linkdping University e
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Determination of FOV and offset
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)
|
unit: ] Exy) obr > b ynit:
e.g. mm 3}'0\' 7 ‘} pixels
T ""X /
T e W
s, \q’FO\
R o Let the world coordinate system and the

camera coordinate system be aligned:
KX ||y, D"~K - (X,v,2)7

Ais now X xZ K11 Kz o\ /X
denqted K <y> ~lyZ|=| 0 Ky ¢ (Y\
(u,v) is now 1 7 o o 1/'%/

‘S

denoted (x,y.

p. 4

Offset between optical centre
and geometrical centre

Ideal image plane Real image grid
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I g Wi, w
7,7 \PFov.- _
) horiz,g = arctan((w/2 — ¢;)/K11)
X vert,g = arctan ((h/Z - cy)/Kzz)

Note:
These angles are
normally small.
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Determination of
Field Of View (FOV)

Determination of
Field Of View (FOV), proof

See figure 1. For simplicity, assume that horiz,g = vertog = 0. Then the
points p; = (w; /2.0, HT and p, = (cp + w/2, ¢y, )T, Therefore

cz+w/2 K1 Ko cg w; /2
Z cy = 0 Ko ¢ 0
1 0o 0 1 f

The first row gives Z(cp + w/2) = Kj1w;i/2 + ¢ f and the third row gives
Z = f. Therefore f(c; +w/2) = K1jw;/2 + cp f, which gives w; = wf /K.
Finally, Opoy = 2arctan(w;/(2f)) = 2arctan(w/(2K4)).

Similarly, ¢poy = 2arctan(h/(2K22)).

\

Ideal image plane Real image grid
X \
A . f
unit: » ot ) & bl unit:
e.g. mm Srov - || pixels
1 X )
T W
7,/ \0FOV
/( !
X Opoy = 2 arctan(w/2/K;1)
¢rov = 2 arctan(h/2/K;,)
v
o Proof: Panorama Stitching. Supplementary Notes.
o Also in next slide. S
p.7

Rotational Homographies
Xe

. Optical Centre

Image plane 2

Image plane 1

o Let the world coordinate system origin
and the camera origin be aligned:

x= (" £~KRX || (x,y, D"~KR- (X,Y,2)T

x K1 Kip ¢\ /11 T2 Ti3 X\
(y) ~1 0 Ky c¢y)|T21 T2z T2z ||V ]
1 0 0 1/ \T31 T32 T33 Z/

\
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Rotational Homographies

o The projections of a point X in the world to the points x
and x, in the two images:

il"’KRlX XZNKsz

o Assume the existence of a homography H,, that maps
points from image2 to image1:

X,~H X, X'
o Insert the expressions from above: "
KR; X~H;; KR, X ] Optical Centre

o This is satisfied when: Image planes2

H,; = KRy RE K1 | image plane 1

\




Panorama stitching

p.9

o In panorama stitching, we have a set of images that
share a common camera centre (origin), i.e. the images
are all taken from the same view-point but in different
directions.

o Given that the objects in the images are far away, the
camera centres do not have to be exactly at the same
point.

o Each image can be transformed into any other by a
homography.
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Panorama stitching

o By applying the homography H,, to image2 (which is
taken by camera2), it can the stitched onto image1
(which is taken by camera1).

o By applying the homography Hj, to image3 (which is
taken by camera3), it can the stitched onto image1
(which is taken by camera1).

o If both image2 and image3 are stitched onto image1,
image1 works as a reference image.

o Itis possible to stitch a whole set of images onto one
reference image.

Panorama stitching, example

o Two images taken from approximately the same view-
point:

Images from: Automatic Panoramic Image Stitching using Invariant Features,
1JCV 2007, Matthew Brown

Panorama stitching, example

o Mark a set of corresponding points:

o From these points: Estimate a homography H that
relates the 2 images.
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Panorama stitching, example

o The right image stitched onto the left image:
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Practical issues

o The pixel values in overlapping regions may differ
even if the geometric transformation is correct
m Vignetting effects
m Interpolation effects
m Exposure time or illumination may be different in two
images
= Moving objects in the scene
o At each pixel:
m Alternative 1: Take the value from only one of the two
images
m Alternative 2: Blend
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Blending weight

o For example, use a weight that is smaller at the edges of
the image and larger at the center:

This is the
weight image

before the »
homography
transformation

o Pano1 and Pano2 are the two images transformed to the
reference grid.

o alpha1 and alpha2 are the weight image transformed to
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Blending

the reference grid. Pano 2lphatPano1-alpha2 Panc?2
o Normalized weighting: ano= alphat+alpha2 -

‘ With
blending

Without
blending »




Practical issues

o To assure a homography between any pair of images,
we must have a pin-hole camera
= No significant amount of lens distortion is allowed
= Alternatively: lens distortion can be estimated and compensated
for before the stitching
o In the panorama computer exercise, we use the
following radial distortion model,

arctan(rip - )
14

Tout =

= where the image is described in polar coordinates, (r, 6).

= You will manually estimate y by undistorting the images using
several different y -values. y is good when straight lines in the
world give straight lines in the image.

m v is small, e.g. y=0.001
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Mapping a point (X,Y,Z)7
to the unit sphere

o A point (X,Y,Z)T is projected to the normalized image
plane (x,,y,,1)T and then transformed to a point (x,y,1)"
on the real image grid as:

(x: y; 1)T = K- (xn; yn; 1)T

| 1 | X.Y.Z
o Consequently: p=(xn,yn,1)

(¥ DT = K- (x,y, DT

P=(xs,ys,zs)

o Finally, a simple geomet- oS
rical consideration gives: center

| (xs'ys'ZS)T = |

normalized
image plane

unit sphere
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Practical issues
o If the view direction between the reference image and the stitched
image is very different, the ‘resolution in’ and the ‘size of’ the two
images will vary a lot.
o Ex) 4 images stitched to a reference image (green):
o An attempt to stitch an image from 90° view direction onto an image
from 0° view direction will result in infinity size of the stitched image.
o Solution: Map the images onto a cylinder or sphere and stitch them
there instead.
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The Orthogonal Procrustes
problem (OPP)

o If two corresponding sets of 3D points from two images are
mapped to the unit sphere, it is possible to determine the
rotation between them using OPP.

o Consider two sets of 3D points | X = (X4,X,,...,Xy) | and

Y= (Y,,Y,, ..., Yy) | that are related as: | X; = RY + €,

o where R is an orthogonal matrix and ¢, is an additive
Gaussian noise term.

o It can be shown (see e.g. Panorama Stitching.
Supplementary Notes) that

if the SVD of XYT gives: |XYT = UDVTl
Then: | R= UVTl
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Axis-Angle Representation

o When R is determined, it is possible to find the rotation axis
i and the rotation angle a € [0, 7|

O i is an eigenvector of R with eigenvalue 1:

= = fi

o The other two eigenvalues are: a

o Use the Matlab command [V D] = eig(R);
o The eigenvectors are in V and the eigenvalues are in D.

o More information on this can be found in e.g. Panorama
Stitching. Supplementary...
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Resampling to Spherical
Coordinates

o Now we have computed different R matrices for each image
to be stitched. They can then be resampled to spherical
coordinates:

Fig. lllustration of spherical coordinates. Left: A world map
painted on a sphere. Right: The same map in longitude-
latitude space.
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Resampling and interpolation  Regsiies

. . f
from in-image Im1 to out-image Im2  |{sgg08,

o Suppose (X2,Y2)T=T: (X1,Y1)T TSBB31

o For all points (X2,Y2) in the out-image:
m Perform an inverse mapping inv(T) to (X1,Y1) in the in-image.
= Perform interpolation, e.g. bilinear interpolation, in the in-
image, obtain a value.
m Put the value at position (X2,Y2) in the out-image

inverse
in—image MappiNg oyt—image

X1 X2

" *(ex,cy)

Y1 Y2 =y
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. . . Repetition
Bilinear interpolation LN
. A=l TSBB31
=y
y f(xfaJ’f),.“‘J;‘i:OA‘?f(xf+1’J/f)
o YEf(x,y)
f(xf’yf+1)I.'""<>B"If(xf+1’yf+1)
A:f(xf,yf) ~(1—xe)+f(xf+1,yf) - X,
B:f(xf,yf+1)-(1—xe)+f(xf+1,yf+1)~xe
fxy)=4-1-y)+By, L.




Spherical coordinate system:
standard form

o Disadvantage: Singularities at
6 ={0,m}

Spherical coordinate system:
longitude-latitude form

Image

here p=(y, Z)T

P

r2=x2+y2+ 2?2

rsin @ cos ¢
= | rsinfsino
rcosf

< 8

[

o Singularities at ¢ = {_E E}

i.e. above and below the camera, north and south pole.

r2=x%2+y?+z2

Recipe

o For all points (¢, 6) in
the output image:
m Transform it with

(sx,sy,5)T = %~ KRp(¢, )

T 7 cos ¢ sin @
y| = 7 sin ¢
Image z rcos ¢ cosfly
here IS
p.2

Singular value decomposition
(SVD)

m Receive the position
(x,y¥) in the input image.

m Perform bilinear inter-
polation in the input
image, obtain a value.

m Put the value at position
(¢, 6) in the output image

0 Output image

Note that, normally, there are
several input images, e.g. three.
The reference image (red) have
the rotation R=l, the identity
matrix. The other images (blue
and green) have rotations R=R,
and R=R,, relative to the
reference image.

Theorem:

o For any NxM real valued matrix X,
= we can find an NxN orthonormal matrix U
= we can find an MxM orthonormal matrix V
= we can find an NxM real diagonal matrix S
= such that:

X = UsvT

m This is the singular value decomposition (SVD) of X




Singular value decomposition
(SVD)

o S is NxM diagonal (non-zero values only in the
diagonal)

o The diagonal elements of S , 04, ..., Op, are real
and non-negative (with P = min(N, M))

o The diagonal elements of S are the singular
values of X

o The singular values are usually ordered such
thato,20,2..20p

Singular value decomposition
(SVD)

o For singular value oy, the corresponding
columns u, and v, of U and V are the
left and right singular vectors of X,
respectively.

O Notice that | Xv, = g uy

T —
X U, = OV

o Remember that | X = USvV?
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Singular value decomposition
(SVD)

o In the case of a non-square matrix X
there will be some left (or right) singular
vectors that neither have a corresponding
singular value o, nor a right (or a left)
singular vector.

o In this case they are simply said to have
singular value 0 since, for example

Xv, =0 (k>P,and N <M)
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Solution of a homogeneous
system of equations using SVD

o Regard the following o Solution:
homogeneous system of -
v b = puv,
equations:
Xb =0 o where y is a scale factor

and v, is the last column
o Perform SVD and rewrite: of V

USVTb =0
UTusvT™h =0 o Matlab code:
SVTb=0 [U,S,V] = svd(X);
b =V(:,n);
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Xb =10

Example: Solve
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o0 Suppose that X is a 4 x 3-matrix. Since X = USVT, we have:

Ty T Ty3 ugp Ugp Uz Uy oo 0 0 o
I91 T2 Ta3 tg) U9 Uag Ug 0 a9 0 "
T3y T39 T33 3] U3y U3z U4 D D a3 12
= 13
Ty Tar Ty3 Ugl U4y U4z T L1
o Previous slide gave: | syTh = 0
Solution: |b = uvs = u(v13,153,v33)" | Insert:
o Solution: Uv3 = [l\V13, V23, V33 nsert:
o1 0 0 i
0 o5 0 U1 V21 U3 v13 0
0 0 o vig v vza | p| wvas | =p 0
U1z U2z Us3 U33 a3

0 0 0

o The smaller o;, the better solution and o5 = 0 solves

Xb = 0 perfectly.

U21
U22
Uag

U3
V32
U3




