TSBB21, Lecture 9

Panorama Stitching. Mathematical tool: SVD

0 Panorama Stitching
o Mathematical tool: SVD

O Literature
m “Panorama Stitching. Supplementary Notes” by Per-Erik Forssén
m Lastin ... "Short about camera geometry and camera calibration”
by Maria Magnusson

m Parts of ... "Introduction to Representations and Estimation in
Geometry”

(IREG) by Klas Nordberg

m Parts of ... "Mathematical Toolbox for Studies in Visual
Computation at Linkoping University” by Klas Nordberg

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linkoping University




Panorama stitching
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Determination of FOV and offset
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O Let the world coordinate system and the
camera coordinate system be aligned:

x~KX

Note:

(6, y, DT~K- (X,Y,2)"

denoted (x,y

Ais now X xZ Ki1 Kip ¢\ /X
denoted K <y> ~|lyz]|=[ 0 Ky ¢ ( Y\’
(u,v) is now 1 7 0 0 1/ &/




Offset between optical centre
and geometrical centre
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Note:
These angles are
normally small. s




Determination of
Field Of View (FOV)

Ideal 1mage plane Real image grid
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Opoy = 2 arctan(w/2/K;4)
¢rov = 2 arctan(h/2/K;)

0O Proof: Panorama Stitching. Supplementary Notes.

0 Also in next slide. XS




Determination of
Field Of View (FOV), proof

See figure 1. For simplicity, assume that horiz,g = vert,g = 0. Then the
points p; = (w;/2.0, f)T and p, = (cz +w/2, ¢y, 1)T. Therefore

cz +w/2 K1 K9 cy wi [2
Z Cy - 0 1{22 Cy 0
1 0 0 1 ¥

The first row gives Z (¢ + w/2) = K1jw;/2 + ¢ f and the third row gives
Z = f. Therefore f(c; +w/2) = K11w;/2 + czf, which gives w; = wf/Kj;.
Finally, fpov = 2arctan(w;/(2f)) = 2arctan(w/(2K11)).

Similarly, ¢pov = 2arctan(h/(2K22)).




Rotational Homographies
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O Let the world coordinate system origin
and the camera origin be aligned:

(
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Rotational Homographies

O The projections of a point X in the world to the points x,
and x, in the two images:

)ZlNKRlX iZNKsz

O Assume the existence of a homography H,, that maps
points from image2 to image1:

X,~H;:1X; X'
O Insert the expressions from above:
K R1 X~ H21 K R2 X ‘ Optical Centre

Image plane 2

O This is satisfied when:

H,;, = KRy R’g K1 } image plane 1




Panorama stitching

O

In panorama stitching, we have a set of images that
share a common camera centre (origin), i.e. the images
are all taken from the same view-point but in different
directions.

Given that the objects in the images are far away, the
camera centres do not have to be exactly at the same
point.

Each image can be transformed into any other by a
homography.




Panorama stitching

O By applying the homography H,, to image2 (which is
taken by camera2), it can the stitched onto image1
(which is taken by camera1).

O By applying the homography H,, to image3 (which is
taken by camera3), it can the stitched onto image1
(which is taken by camera1).

O If both image2 and image3 are stitched onto image1,
image1 works as a reference image.

O It is possible to stitch a whole set of images onto one
reference image.

p. 10




Panorama stitching, example

O Two images taken from approximately the same view-
point:

Images from: Automatic Panoramic Image Stitching using Invariant Features,
lJCV 2007, Matthew Brown

’l|“_




Panorama stitching, example

0 Mark a set of corresponding points:

O From these points: Estimate a homography H that
relates the 2 images.

p. 12




Panorama stitching, example

O The right image stitched onto the left image:

p. 13
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Practical issues

O The pixel values in overlapping regions may differ
even if the geometric transformation is correct
= Vignetting effects
= [nterpolation effects
m Exposure time or illumination may be different in two
IMmages
= Moving objects in the scene
O At each pixel:

m Alternative 1. Take the value from only one of the two
iImages
m Alternative 2: Blend




Blending weight

0O For example, use a weight that is smaller at the edges of
the image and larger at the center:

This is the
weight image
before the
homography
transformation

0 Pano1 and Pano2 are the two images transformed to the
reference grid.

O alpha1 and alpha2 are the weight image transformed to

the reference grid.
0 Normalized weighting:

Pano— alpha1.Pano1+alpha2-Pans?2
B alpha1+alpha?2




Blending

With
blending

Without
blending
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Practical issues

O To assure a homography between any pair of images,

we must have a pin-hole camera

= No significant amount of lens distortion is allowed
m Alternatively: lens distortion can be estimated and compensated

for before the stitching

O In the panorama computer exercise, we use the

following radial distortion model,

Tout =

arctan(rip )

Y

m where the image is described in polar coordinates, (r, 0).

= You will manually estimate y by undistorting the images using
several different y -values. y is good when straight lines in the

world give straight lines in the image.
m yis small, e.g. y=0.001




Practical issues

o If the view direction between the reference image and the stitched
image is very different, the ‘resolution in’ and the ‘size of’ the two
images will vary a lot.

0 Ex) 4 images stitched to a reference image (green):

~_ _—

1

// \\
0 An attempt to stitch an image from 90° view direction onto an image

from Q° view direction will result in infinity size of the stitched image.

O Solution: Map the images onto a cylinder or sphere and stitch them
there instead.




Mapping a point (X,Y,Z)"

to the unit sphere

o A point (X,Y,Z)" is projected to the normalized image
plane (x.,y,,1)" and then transformed to a point (x,y,1)"

on the real image grid as:

(.X', Y, 1)T = K- (xnr YV 1)T

0 Consequently:

(xnr Vn 1)T = K. (xr Y, 1)T

O Finally, a simple geomet-
rical consideration gives: center

(xsrysr ZS)T — "

optical

unit sphere

P=(xs,ys,zs)

normalized

p=(xn,yn,1)

image plane

X)Y,Z2)




The Orthogonal Procrustes
problem (OPP)

O If two corresponding sets of 3D points from two images are

mapped to the unit sphere, it is possible to determine the

rotation between them using OPP.
0 Consider two sets of 3D points | X = (X1, X5, ..., Xy)

and

Y= (Y, Y, .., Yy)| that are related as: | X;, = RY; + €,

0 where R is an orthogonal matrix and ¢, is an additive
Gaussian noise term.

O It can be shown (see e.g. Panorama Stitching.
Supplementary Notes) that

if the SVD of XYT gives: | XYT = uDVT
Then:|R = UVT




Axis-Angle Representation

0 When R is determined, it is possible to find the rotation axis
n and the rotation angle a € [0, [

O n is an eigenvector of R with eigenvalue 1:

= )

n=Rn
o The other two eigenvalues are: Qa
eia e—ia
O Use the Matlab command [V D] = eig(R);

O The eigenvectors are in V and the eigenvalues are in D.

O More information on this can be found in e.q. Panorama
Stitching. Supplementary...




Resampling to Spherical
Coordinates

0 Now we have computed different R matrices for each image
to be stitched. They can then be resampled to spherical
coordinates:

Fig. lllustration of spherical coordinates. Left: A world map
painted on a sphere. Right: The same map in longitude-
latitude space.




Resampling and interpolation
from in-image Im1 to out-image Im2

p. 23

O Suppose (X2,Y2)' =T- (X1,Y1)T

0 For all points (X2,Y2) in the out-image:
m Perform an inverse mapping inv(T) to (X1,Y1) in the in-image.
m Perform interpolation, e.g. bilinear interpolation, in the in-

image, obtain a value.

m Put the value at position (X2,Y2) in the out-image

in—image

mnverse
mappig  oyt—image

Y1

X1

‘(ex,cy)

M

Y2

X2

Repetition
from
TSBBO0S,
TSBB31
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o _ . Repetition
Bilinear interpolation 08
. A — TSBB31
l_’ < 9 >
Y f(xf’yf)é """ @'?f(fo“l’yf)

vel

B/ (x,y)
f(xf’yf+1).'""'<>B"If(xf+1’yf+1)
(Azf(xf,yf) -(l—xe)+f(xf+1,yf) - X,

B = f(xf,yf +1)-(1—xe)+ f(xf +1Ly, +1)-xe
S y)=d4-(-p)+ By,

J\
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Spherical coordinate system:
standard form

0 Disadvantage: Singularities at

0 = {0, m}
Image
here P = (X, Y, Z)T
AZ P
0 ré =x%+y%+ z*

i . % rsin @ cos ¢
l\: y| = | rsinfsino
L0 N z rcosf

. :
hEN




Spherical coordinate system:
longitude-latitude form

0O Singularities at ¢ = {—g%}

l.e. above and below the camera, north and south pole.

AY p

p=(xy2)"

r? =x%+y%+ z°

¢

N\ |
\zl\: T rcos ¢sin @
N
> 9 p=|ly] = rsin @
Image s T COS cb COS 9/

here




Recipe

o For all points (¢,6) in
the output image:
= Transform it with

(sx,sy,s)! = ~KRp(¢, 0)

m Receive the position
(x,y) in the input image.
m Perform bilinear inter-

polation in the input
Image, obtain a value.

m Put the value at position
(¢, 0) in the output image

0 Output image

Note that, normally, there are
several input images, e.g. three.
The reference image (red) have
the rotation R=l, the identity
matrix. The other images (blue
and green) have rotations R=R,
and R=R,, relative to the :
reference image.
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Singular value decomposition
(SVD)

Theorem:

0 For any NxM real valued matrix X,
m we can find an NxN orthonormal matrix U
= we can find an MxM orthonormal matrix V
= we can find an NxM real diagonal matrix S
m such that:

X = USsv’

m This is the singular value decomposition (SVD) of X
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Singular value decomposition
(SVD)

0 S is NxM diagonal (non-zero values only in the
diagonal)

O The diagonal elements of S, o4, ..., Op, are real
and non-negative (with P = min(N, M))

0O The diagonal elements of S are the singular
values of X

0 The singular values are usually ordered such
thato, 20,2 ... 2 0p
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Singular value decomposition
(SVD)

o For singular value o,, the corresponding
columns u, and v, of U and V are the
left and right singular vectors of X,
respectively.

0 Notice that | Xv, = g, uy

T —
X U, = 0,V

0 Rememberthat | X = ysvT
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Singular value decomposition
(SVD)

o In the case of a non-square matrix X
there will be some left (or right) singular
vectors that neither have a corresponding
singular value o, nor a right (or a left)
singular vector.

o In this case they are simply said to have
singular value 0 since, for example

Xv, =0 (k>P,and N <M)




Solution of a homogeneous
system of equations using SVD

O

Regard the following
homogeneous system of
equations:

Xb=0

Perform SVD and rewrite:

USVTb =0
UTusvib =0

SVib =0

O Solution:

O where y is a scale factor
and v, is the last column
of V

O Matlab code:
[U,S,V] = svd(X)
b =V(:,n);
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Example: Solve [xb=0

0 Suppose that X is a 4 x 3-matrix. Since X = USV', we have:

11 X119 T13 U191 U9 U3 U4 / a1 U U - ‘ 1
. . Y . : U1 V21 V31
To] T9y T3 g Uy U9y oy 0 o 0 |
" . _ == V12 U2 V33
31 I392 I33 Uzl Uzns 1Uzz U334 0 0 a3
; - i o b Uiz V23 V33
41 T42 T43 g U4g2 Ug3 Ugy \

O Previous slide gave: | gyTp = 0

o Solution: |b = uvs = H(v13;V23;v33)T Insert:

op 0 0

| N1 Vo U ) 0
0 oy 0 ‘l-'11 1'21 1'31 1‘13 B ;
0 () o V12 V92 V32 [l U923 - ,U

) . . U1s ()] Uas (IpT O
0 0 0 13 23 33 33 3

O The smaller a,, the better solution and o5 = 0 solves
Xb = 0 perfectly. SN




