Transformation
with homogenous matrices

p.2

o A point in the 3D-world can be described in
homogenous coordinates as (X,Y,Z,1)T. It can be
transformed to a new point (Xl,Yl,Zl,l) by using

the 4x4-matrix M according to

X1 X my; Mgy Mgz Myy X
oM. [ Y = Mer M2z M2z Mo Y
Zy Z M31 M3y M3z Mgay A

1 1 0 0 0 1 1
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TSBB21, Lecture 6
Camera calibration 1
o Camera calibration 1
= Homogenous matrices for scaling, translation, rotation, skewing
= The Pinhole camera model
= Outer and inner parameters
= 3D calibration of a camera
= Calibration of a flat world, a homography
= Inhomogeneous and homogeneous solutions.
= Camera resectioning
o Literature
= "Short about camera geometry and camera calibration”
by Maria Magnusson
o Alternative Literature
= Parts of ...
"Introduction to Representations and Estimation in Geometry”
(IREG) by Klas Nordberg
Maria Magnusson, CVL, Dept. of Electrical Engineering, Linkdping University A IS
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A homogeneous matrix
for translation
1.0 0 ¢ X+t 10 0 t\ /X
x( )= L0t Y+t 010 ¢t)[v
tx; ty: tz - 0 0 1 tz Z + tz 0 0 1 tz Z
1 0 0 0 1 1
0 0 0 1
Egq. 5) Note:

A normal 3x3-matrix will
not work for translation! i

b | S
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Homogenous matrices
for scaling and skewing

0 1 a b 0

0 sb 0 0 0 1 o 0 c 1 d 0
S(SwSpsc)=[0 0 s. 0 0 0 1 0 e f 1 0
0 0 0 1 0 0 0 1 0 0 o 1

Eq. (3) Eq. (10) Eq. (11)

q:




The Lens law (repetition)

object nlens
A . The lens law:
image plane
1 1 1
B —+-—==
a b f
where f is the
f focal length
a b
I 1
Size relations:

The lens law states that if the image plane

distance a from the lens will give a sharp i

at the distance b from the lens, then the object at

is located A B B

nage. a b = f

Note that since normally a>>b =>} bxf.

U

. p.5
Homogeneous matrices
for rotation
Rotation with the angle 6
around the x-axis Eq. (7)
1 0 0 0
0 cosf@ —sinf O
Ry,=]0 sinf cosf® O
0 0 0 1
Rotation with the angle 6| |Rotation with the angle 6
Eq. (8) around the y-axis around the z-axis Eq. (9)
cos 0 sinf O cosf —sinfd 0 O
0 1 0 0 sinf cos6 0 O
Ry =|—-sinf 0 cosf 0 R, = 0 0 1 0
o 0 o0 1 0 0 o il
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The pinhole camera model,

real geometry

1

i The image plane is
located behind the lens!

~ lens / pin-hole

N
~
~
~
~
~
~
~
N
~
~

~.  world—

The pinhole camera
model, mirrored
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Here we use the notation:
ideal image plane
with coordinates (u; ,v;).

The image carr}%r%1 o len ideal
H coorainate ens
plane is system image

mirrored

sothatit .U “
is located

in front of \

the lens.

Relation between the
coordinates of the two

o9

Alternatively the notation
normalized image plane
with coordinates
(Uy V) =(ui/f, i /)
may be used.

~

~.  world

Y * coordinate
system

Y * coordinate
system
X

Z

Fig‘. (.

coordinate systems: z o
wov \ Z

Wy, vy, DT =W <77 1) =V, wW)T =Rt - (X,Y,Z, D7 | 155
3




Technique to express perspectivé’
transformation with vectors

f Fig. 3

L S (UVW)

v, V
Upn=—7= T
u, and v, are f w u; v; _ T
the norma- w u W T 1) =Wv,w)
lized image Up = ? “w m
coordinates | £q. (1)

p. 10

Relation between the ideal image
plane and the real image plane

image plane
measured

—

A Y
S real
N image plane
' AR measured

i
Jn pixels

world S
* coordinate N
system N

i

T
u; v; Q
Eq. (15) (“'”'1)T=A'(7'7~#)<

1"

. . p.
Relation between world coordinates
and real image coordinates

T
Ui Vi _ T
W<f,f,1) u,v,w)

=[Rt]-(X,Y,Z, 1T

T
(u,v,l)T=A-(%.?,1) Eq. (15)

~

| wv, D5, D" = AR - (X,Y,2,1)" |

o (18)

_ S

Unambiguousness, field of view *
(FOV) and resolution

o The parameters W and s are
not unambiguously deter-
mined. Both the big ball and
the small ball gives the same
contour in the (u;,v;)-plane.
Consequently, we cannot
know W.

Therefore we can also
change W to s in the
previous slide.

It is appropriate to measure
the field of view (FOV) as the
largest measurable angle in
the U- and V-direction. (see
e.g. Lab exercise E:
Panorama stitching)

The resolution of an object in
an image depends on the
distance from the camera.
The resolution in the U-
direction can, for examele,,
be measured as the FOVi | -
angle/the number of pixels.

FOV angle in
the i U-direction




Inner and outer parameters Outer parameters
Relation between camera
Relation between world coordinates the coordinate systems:| coordinate~, lens
and real image coordinates: T _ system e ideal
w,v,w)t = image plane

) r iU
(u,v, DT~s(u,v, DT = A[Rt] - (X,Y,Z, )T [Rt] - (X,Y,Z,1) \

Outer parameters

Fe (2 |[Ee 3]

\\\ world
~ coordinate
M1 T2 T3 tl system
The inner parameters The outer parameters Rt =71 722 723 t 7z
for a camera for a camera at a fix position r - - ¢
can be determined through can be determined through 31 732 733 3
= el preseile. 2 calion frodsilie (t,,t,,13): the translation of the camera in relation to the world
R: the rotation of the camera in relation to the world
p. 15 p. 16
Inner parameters Inner parameters, ex) with y=0
i camera f VA
the image planes: comias s it wy (@Y o\ (u/f
= - 1 V)= 0 B UO ]]l/f
-y | 1 0 0 1 1 r————— °®
u; v
(u.v,l)T=A-(—‘,—‘,1> ! u : :B)
f f AN ! 1 ﬁ 1 I
o rea . \
R | image | (u v) | (u v.) v077 & ---—-- 1
Eq. (15 v 1 ol : Lt \ J
a y uO q ( ) ) ! 1deal 1 mf:)a:illfed A) (uo, Uo) (0,0) A)
A= (0 B U0> lrglg;lil:ge : in pixels B) (a+ uy, B+ 170) (f' f) | a
s - _ > U
0 0 1 Eq (16) in e.g. mm T==a u‘()
B: scaling in the v-direction (ug,Vg): the cross-section between the optical axis and the real image plane,
o scaling i the u-direction the image center, the principal point.
v: skewing (lack of orthogonality between horizontal and vertical axes) o and B denotes the scaling i the u- and v-direction, respectively.
(often close to 0) If o = B, the pixels are quadratic.
(uy,vy): the cross-section between the optical axis and the real image plang. If o # B, the pixels are rectangular, but not quadratic. )




Inner parameters, ex) with y #0

u a v U\ /w/f ,
RREEIE
1 0 0 1 1

| (u,v) | (u;, vy)
A) (uo; 170) (O,O) Vo
B) |(@+y+uy,B+vy) | (f.f)

vy is the skewing parameter
& =arctan(y/p) gives an angular measurement
& is normally small, i.e. close to 0 degrees
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3D calibration,
the inhomogeneous solution

o Set C34 = 1. (If C54, seems to be 0, another
element can be set to 1.)

Cl 1 Cl 2 Cl 3 Cl4-

C=[Ca G Co3 Cp Eq. (20)
CGs1 G (33 1

The matrix C can be determined by measuring a
number of corresponding point (how many?) in the world
(X, Yi, Z;) and the image (u;, v;), where 1< i < N.

3D calibration of a camera

( s(wv, D" = A[Rt] - (X,Y,Z, D)7 || Eq. (17)

suv, DT =C-(X,Y,Z,1)T Eq. (18)

We will first determine C, only.
Later, we will learn how to determine A, R and t.

Depending on the variable s, Ci1 Gz Gz Gy

C can only be determined upto | [C = | C21 Co2 (3 (a4
a scale factor, say A. C31 C3; (33 C3y

We have now two possibilites,
either make an inhomogeneous or an homogeneous solution.

4
solution C G G )|
C=|Cy Gy Gz Cpy

C3 1 C3 2 C3 3 1

1 /Eq (21)| | Eq. (20
[set] A Fq CD] | Eg. C0) Eq. (19)

|Inhomogeneous sy, D' =C-(X,Y,2,1)7

Cc= (Cllr C12' C13' C14—' C21! C22r C23r C24-r C31' C32' C33)
D-c=
Xs W Z, 1 0 0 0 0 —-wuXy -wY -wZ; Ci1 Uy
00 0 0 X, ¥, Z 1 —-uX -unY -uZ \[Cs vy
X, Y, Z, 1 0 0 0 0 —wX, —-uw¥ —-wZ, ||Cs|=|w
0 0 0 0 Xy Yy Zy 1 —vyXy —vy¥n —vnZy/ \Cas vy
—f Eq. (22)

11 equations give that at least 6 point-pairs ("5%2") is needed to determing GW
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Show Eq. (21)

Show (!
We have measured the point (X.,Y.,Z,) inthe world.
I+ corresponds Yo (u,v) in the Image.

(18,19)> s(u.) (o. Ca Ci» c.~) ¥,
Vi) “|€a Czz Cz23 Cauf( Y
1 Ca Caz C33 || ZII

Sw = CuX +CaYi+ Cis Zi +Cia (o)
Svr = o (b)
S CoitXy+Ca ¥ +Ca Z) + | (o)
(0,0) 2 W, =Co Xt¢CizY) +Ci3 Zy + Cin
~CaXiu,~Ca2Yiu, - G33 Z, 1,
the first row in (20)

13

i
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3D calibration,
the homogeneous solution

o In the homogeneous solution, Cs4is not set to 1. Instead C is kept as:
Ci1 Ciz Gz Ciy

C=[Ca Gz Cpz3 Cp
C31 C32 C33 (3

o To improve performance, Hartley normalization (see e.g. IREG) is used:
= (X, Y; Z)-coordinates:
Calculate the mean and standard deviation.

Subtract the mean, divide by the standard deviation and
multiply with \2

= (u;, v))-coordinates:
Calculate the mean and standard deviation.
Subtract the mean, divide by standard dev. and mult. with V2
o Form an equation system, see next slide.
o Solve using SVD, see next-next lecture. N
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Solution of the equation system
The cquation aystem can be sohved 35—

If we measure more than 5%2 point-pairs, the equation
system becomes over-determined with the solution:

More
point-pairs
gives a more
certain
solution!

f
DTf
(DTD)1DTf
= D*f

Eq. (23)

D+ is the so called pseudo-inverse of D.
This is the Least Square solution of the equation system.
This is also equivalent to Maximum Likelihood-minimization.

Homogeneous sy, D' =C-(K,Y,2,1)"

4
solution C G G Cu\||
C=|Cy Gy Gz Cpy

C3 1 C3 2 C3 3 C3 4

Set: Eq. (19)
¢ = (€11, Cy2, C13, Cra, Caq, Cop, Co3, Caa, C31, C3, C33, Ca4)
D-c=
X, Y, Zz 1 0 0 0 0 —-wX, -wY -wZ, -u\ /Cn 0
0 0 0 0 X, Y Z, 1 —-vX -vY, -vZ v \[Cpy 0
X, Yo Z, 1 0 0 0 0 —-upX, —-wY, —-uZ, —up [[Cs|=]0
0 0 0 0 Xy Yy Zy 1 —vuXy —va¥y —vnZy —vn/) \Cas 0
Matlab solution:| [U,S,V] = svd(D);

c=V(:,12);

| ¢ may then be scaled, if desired




Using the calibrated camera

o We now know how a point in the world (X,Y,Z)T will be
mapped to a point in the image (u,v)T.

o We do not know how a point in the |mage (u,v)T will be
mapped to a point in the world (X,Y,Z

o But we do know that a point in the |mage$u v)T
corresponds to a line in the world (X,Y,Z2)

o From A and an object point in the image, we can calculate
the angular direction to the corresponding object point in
the world. Then it is possible for a movable camera to
follow an object. Lab task!

o If we have more knowledge about the world, for example_if
it is a flat world, we know that a point in the image (u,v)T
is mapped to a Pomt in the world (X,Y,Z)T. This is camera
calibration of a flat world, a homography Lab task!

o Another possibility is to use stereo, i.e. using two
calibrated cameras. They gives one "straight ine, each. The
cross-section between these lines gives the exact position
of the point in the world.
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Inhomogeneous solution "
of a homography
swv, )" =C- (XY, D" Cii Gz Gz || Eq. (25)

C=|Cy Cpy Gy

€ = (€11, C12,C13, €31, €22, C23, G531, C32) || Eq. (26) | | Eq. (27)
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From C to A[R{]
o When the matrix C is determined, it is possible
to receive A, R and t by using a little linear
algebra.
o This procedure is called camera resectioning.
o We will talk about that in the end of this
lecture.
. . p. 27|
Calibration of a flat world,
a homography
camera v
g;;)lre%nale lens el . Flg 1.4
) image plane N
N U measured \\ u
in e.g. mm \\ real
f \\ image plane
o = N measured
s N . .
v B, N in pixels
\\ world \\

Relation §§§’t§1;“at° N

Between /’ A point in the
the _ image (u,v)"
coordinate is mapped to
systems: a point in the

— world (X,Y.5
suv, DT =C- (X, Y, DT Eq. (24) and vice Vé;‘Z\q

X, 5 1. 0 0 0 —wXy -—-wyh Ci1 Uy

0 0 0 X, ¥ 1 —uvX —-uY|\[Cs 2
D-c=(X, ¥, 1 0 0 0 —-uX, —-ul, |[Cs|=|uw]|=f

0 0 0 Xy Yy 1 —vyXy —va¥n/ \Csz vy
‘Solution as before: Hc =D*f | ‘Matlab solution: | ¢ = pinv (D) *£f;

’ 8 equations give that at least 4 point-pairs is needed to determine C

U
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Note:
Hartley normalization
(see a previous slide)
may improve per-
formance!

Homogeneous solution
of a homography

swv, DT =C- (X, Y,1)T C1 G2 Gz

c= (Clll C12' C13' C21' CZZ' C23' C31' C32' C33)
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Camera resectioning

From previous slides:
Relation between world coordinates and real image coordinates:

(u,v, DT~A[Rt] - (X,Y,Z, DT ~C-(X,Y,Z, 1T

A[Rt]~ C €11 €12 C13 Cia
C=|Ca1 Ca2 C3 Cp4
C31 C32 (33 C34

a v Up i Tz Tz 4
A=10 B vy [Rt] =721 T2 T2z U

0 O 1 31 T3 T33 t3

X, 2 1 0 0 0 —-wXy -—-w¥ -—-u Ci1 0
0 0 0 X, ¥, 1 —wuX -unY -v \[C, 0
D-c=|X, Y, 1 0 0 0 —uX, -—-u), -—u Csz|=1]0
0 0 0 Xy Yy 1 —vyXy —vy¥y —vn/ \Ci3 0
Matlab solution:| [U,S,V] = svd(D);
c=V(:,9);
| ¢ may then be scaled, if desired LN
p. 31

Camera resectioning

o If C is not at infinity then we can always find a unique
decomposition of C into its internal A and external [Rt]
parameters. This decomposition is referred to as
camera resectioning.

o Ais an upper triangular 3x3 matrix

o Ris a rotational matrix, which describes rotations
around the X, Y- and Z-axes.

o Ris also an orthogonal matrix, which is a square
matrix whose columns and rows are orthogonal unit
vectors (i.e. orthonormal vectors), i.e. RTR=RRT=l,
where | is the identity matrix.

o tis a translation vector, which describes a translation
along the X, Y- and Z-axes. <
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QR- and RQ-factorization

o QR-factorization decomposes a matrix B into an
orthogonal matrix Q multiplied by an upper (or right)
triangular matrix R.

o Matlab command: [Q,R] = qr (B);
o B and Qis m-by-n

o With a trick (see Matlab code later) an rq function can be
formed, with Matlab command: [R,Q] = rq(B) ;

o In our case:
o [A,R] = rgq(C(:,1:3));

Confusion:
R has different meanings!
The triangular R is marked
with turquoise.




Matlab COde (written by Bjorn Johansson)

function [K,R,t] = P2KRt (P)

p. 34

After RQ-factorization, "
we need to:
o Fixt.
o Set element (3,3)in Ato 1.
o R should have det(R)=1 (no mirroring)
p. 35

Matlab code

K should have positive sign along the diagonal
= diag(sign(diag(K)));

= K*D;

= D*R;

= D*t;

¢ ™ R O o

ae
o

should have det(R)=1 (no mirroring)
= det(R) *t;
R = det(R)*R;

o
I

% [K,R,t] = P2KRt(P)
% Computes camera matrix K, rotation R, and translation t
% fron projection matrix P. Relation:
% P ~ K[R t]
% P - 3/4 projection matrix
% K - 3/3 camera matrix
% R - 3/3 rotation matrix
% t - 3/1 translation vector Note:
A is now denoted K
[K,R] = rq(P(:,1:3)); C is denoted P
t = inv(K)*P(:,4);
K = K/K(3,3);
LIS
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Matlab code
function [R,Q] = rq(a)
% [R,Q] = rq(a)
% Orthogonal-triangular decomposition, A = R*Q, where
% R is an upper triangular matrix and
% Q is an orthogonal matrix.
A =A';
A = A(end:-1:1,end:-1:1);
[Q,R] = qr(A);
R = R';R = R(end:-1:1,end:-1:1);
Q=0';0 = Q(end:-1:1,end:-1:1);
q:




