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1 Introduction

We will present the basic theory for the camera geometry. Our goal is camera
calibration and the tools necessary for this. We start with homogeneous matrices
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that can be used to describe geometric transformations in a simple manner. Then
we consider the pinhole camera model, the simplified camera model that we will
show how to calibrate.

A camera matrix describes the mapping from the 3D world to a camera image.
The camera matrix can be determined through a number of corresponding points
measured in the world and the image. We also demonstrate the common special
case of camera calibration when it can be assumed that the world is flat. Then,
a plane in the world is transformed to the image plane. Such a plane-to-plane
mapping is called a homography.

Finally, we discuss some useful mathematical tools needed for camera cali-
bration. We show that the solution we present for the determination of the camera
matrix is equivalent to a least-squares solution. We also show how to solve a
homogeneous system of equations using SVD (singular value decomposition).

The content of this text is based largely on [1], [4], [6] and [7]. It is also meant
to be used as a supplement and aid during reading of [6] and [7].

2 Camera calibration

2.1 Geometrical transformations with homogeneous matrices

Geometrical transformations are commonly used in related topics such as 3D com-
puter graphics. The idea is to use homogeneous coordinates to describe affine
transformations.

A point in the 3D world coordinate system can be described by (X, Y, Z, 1)T .
It can be transformed to a new point (X1, Y1, Z1, 1)

T using

(X1, Y1, Z1, 1)
T = M · (X, Y, Z, 1)T , (1)

where M is a 4× 4-matrix.

Alternatively, a point in the 3D world coordinate system (X, Y, Z, 1)T can be
transformed to a point (U, V,W, 1)T in a different coordinate system, such as a
camera coordinate system, using

(U, V,W, 1)T = M · (X, Y, Z, 1)T . (2)

Note that we have drawn a horizontal dashed line in the homogeneous matrices
below. The fourth row is actually quite uninteresting, since it is always [0, 0, 0, 1]
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and it is only needed during multiplication of homogeneous matrices. Therefore,
in the following sections, a 3 × 4-matrix is used instead of a 4 × 4-matrix to
describe how the camera is related to the 3D world.

2.1.1 Scaling

The scaling matrix is given by

S(sa, sb, sc) =

⎛
⎜⎜⎜⎜⎝

sa 0 0 0
0 sb 0 0
0 0 sc 0
. . . . . . . . . . . .
0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (3)

A point in the 3D world, (X, Y, Z, 1)T , is transformed to (saX, sbY, scZ, 1)
T by

the S-matrix according to
⎛
⎜⎜⎝
saX
sbY
scZ
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
sa 0 0 0
0 sb 0 0
0 0 sc 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
X
Y
Z
1

⎞
⎟⎟⎠ . (4)

2.1.2 Translation

The translation matrix is given by

T (tx, ty, tz) =

⎛
⎜⎜⎜⎜⎝

1 0 0 tx
0 1 0 ty
0 0 1 tz
. . . . . . . . . . .
0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (5)

A point in the 3D world, (X, Y, Z, 1)T , is transformed to (X+tx, Y+ty, Z+tz, 1)
T

by the T -matrix according to
⎛
⎜⎜⎝
X + tx
Y + ty
Z + tz

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
X
Y
Z
1

⎞
⎟⎟⎠ . (6)
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2.1.3 Rotation

Here we suppose that the rotation is measured counterclockwise around the actual
axis. Rotation an angle θ around the X-axis is given by

Rx =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
. . . . . . . . . . . . . . . . . . .
0 0 0 1

⎞
⎟⎟⎟⎟⎠ , (7)

rotation an angle θ around the Y -axis is given by

Ry =

⎛
⎜⎜⎜⎜⎝

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
. . . . . . . . . . . . . . . . . . .

0 0 0 1

⎞
⎟⎟⎟⎟⎠ (8)

and rotation an angle θ around the Z-axis is given by

Rz =

⎛
⎜⎜⎜⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0

. . . . . . . . . . . . . . . . . . .
0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (9)

2.1.4 Skewing

Finally, we should also mention skewing. Skewing is a linear change of coordi-
nates based on one coordinate. Skewing can transform a square to a parallelo-
gram. The matrix below shows a skewing in the X-direction which depends on
the Y -coordinate. ⎛

⎜⎜⎜⎜⎝

1 a 0 0
0 1 0 0
0 0 1 0
. . . . . . . . . .
0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (10)
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A general skewing is described by⎛
⎜⎜⎜⎜⎝

1 a b 0
c 1 d 0
e f 1 0
. . . . . . . . . .
0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (11)

2.2 The pinhole camera model

Figure 1 shows a simple model of a camera, the so-called pinhole camera model.
It works decently for a regular camera. However, it must be modified and sup-
plemented if one is dealing with thick lenses, such as microscope or wide-angle
lenses. There is a connection between the coordinate systems in the figure and this

coordinate
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Figure 1: The pinhole camera model, real geometry.

connection can be modeled using a matrix. Certainly, in reality the image plane
is located behind the lens. However, it is easier to see the connection between the
coordinate systems if the image plane is reflected so that it is located in front of
the lens. This reflected geometry is shown in Figure 2. The following formula
gives the connection between the coordinate systems,

W (ui/f, vi/f, 1)
T = (U, V,W )T = [R t] · (X, Y, Z, 1)T , (12)
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Figure 2: The pinhole camera model, calculation friendly geometry.

where (X, Y, Z)T are the world coordinates, (U, V,W )T are the camera coordi-
nates and (ui, vi)

T are the ideal image coordinates. The matrix [R t] is modelling
rotation and translation and can be written

[R t] =

⎛
⎝ r11 r12 r13 t1

r21 r22 r23 t2
r31 r32 r33 t3

⎞
⎠ . (13)

The first part of Equation (12) shows one way to describe the perspective transfor-
mation. See Figure 3. We wish to project the point (U, V,W ) on the ideal image
plane (ui, vi), which is located at a distance of f from the lens. Uniform triangles
give { vi

f
= V

W
ui

f
= U

W

(14)

which is exactly what is written in the first part of Equation (12). The real im-

iV v

uU W

(U,V,W)

f

i

Figure 3: Perspective transformation.
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age coordinates (u, v)T is normally different from the ideal image coordinates
(ui, vi)

T . Also, we should mention the normalized image coordinates which are
simply (un, vn)

T = (ui/f, vi/f)
T . The following equations show the relation-

ships,
(u, v, 1)T = A · (ui/f, vi/f, 1)

T = A · (un, vn, 1)
T (15)

and

A =

⎛
⎝ α γ u0

0 β v0
0 0 1

⎞
⎠ =

⎛
⎝ f γ u0

0 kf v0
0 0 1

⎞
⎠ , (16)

where (u0, v0)
T are the real image coordinates corresponding to the intersection

of the optical axis with the ideal image plane, (ui, vi)
T = (0, 0)T , where α and β

are the scale factors for the u- and v-axes of the image, and where γ describes the
skew of the two image axes. An angular skew measurement is given by

ξ = arctan(γ/β). (17)

Equation (12) and (15) now gives

s(u, v, 1)T = A[R t] · (X, Y, Z, 1)T , (18)

where we have replaced W with s to obtain a more general relation. The reason is
that not only A[R t] transforms (X, Y, Z)T to (u, v)T , but also k·A[R t] transforms
(X, Y, Z)T to (u, v)T , where k is a constant.

In the following, we will show how do determine C = A[R t] through a
calibration procedure. When C is determined, there are methods to sort out A and
[R t] individually. An alternative is to use Zhang’s method, [6] and [7], which
gives A and [R t] directly.

2.3 Calibration of a camera in the 3D world

See Figure 2. A point (X, Y, Z, 1)T in the world is transformed to the real image
plane (u, v, 1)T through the C-matrix,

s(u, v, 1)T = C · (X, Y, Z, 1)T . (19)

If we determine a number of corresponding points in the world (Xi, Yi, Zi) and
in the image (ui, vi), where 1 ≤ i ≤ N , the matrix C can be determined up to a
scale factor because of the variable s in Equation (19). We can therefore choose
to set the last element C34 = 1, which gives

C =

⎛
⎝ C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 1

⎞
⎠ . (20)
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Let
c = (C11, C12, C13, C14, C21, C22, C23, C24, C31, C32, C33)

T . (21)

Using the measured corresponding points in the world and in the image, the fol-
lowing equation system is obtained,

D · c =⎛
⎜⎜⎜⎜⎜⎝

X1 Y1 Z1 1 0 0 0 0 −u1X1 −u1Y1 −u1Z1

0 0 0 0 X1 Y1 Z1 1 −v1X1 −v1Y1 −v1Z1

X2 Y2 Z2 1 0 0 0 0 −u2X2 −u2Y2 −u2Z2
...

...
...

...
...

...
...

...
...

...
0 0 0 0 XN YN ZN 1 −vNXN −vNYN −vNZN

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

C11

C12

C13
...

C33

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

u1

v1
u2

...
vN

⎞
⎟⎟⎟⎟⎟⎠

= f. (22)

As you can see, at least six (or rather 5 1/2) points (Xi, Yi, Zi) in the world are
needed to determine C. However, the solution will obviously be more certain the
more points we measure. We now rewrite the system of equations as follows

D · c = f

DTD · c = DTf

c = (DTD)−1DTf

c = D†f, (23)

where D† is the so-called pseudo-inverse of D. Note that DTD becomes a square
matrix. Provided that DTD is invertible and that the number of rows in D is
greater than or equal to the number of columns, Equation (23) is valid. It can be
shown that Equation (23) is equivalent to both maximum likelihood minimization
and least squares adjustment, see Section 3.1.

After this calibration, where the matrix C has been determined, we will be
able to predict how a point in the world (X, Y, Z)T is transformed to a point in the
image (u, v)T . Note, however, that we cannot say that a point (u, v)T in the image
corresponds to a certain point in the world. Instead, a point (u, v)T in the image
corresponds to a line in the world.

If we have more knowledge of the points in the world, it might be possible to
accurately determine the correspondence between image point and world point.
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Such a case is when all points are located in a flat world, a plane. This will be
shown in the next section.

Another possibility is to use stereo, i.e. using two calibrated cameras. The
interesting point is identified in the images of both cameras, which provides two
straight lines in the world. The intersection between those two lines gives the
exact location of the point in the world.

2.4 Calibration of a camera and a flat world, a homography

See the Figure below. We want to calibrate a camera against a flat world, z = 0,

i
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Figure 4: The pinhole camera model with a flat world, a homography, Z = 0

by determining the relationship between the image coordinates (u, v)T and the
world coordinates (X, Y, Z = 0)T . We recall Equation (19) and set Z = 0, which
gives

s(u, v, 1)T = C · (X, Y, 1)T . (24)

If we determine a number of corresponding points in the world (Xi, Yi) and in the
image (ui, vi), where 1 ≤ i ≤ N , the matrix C can be determined up to a scale
factor because of the variable s in Equation (24). We can therefore choose to set
the last element C33 = 1, which gives

C =

⎛
⎝ C11 C12 C13

C21 C22 C23

C31 C32 1

⎞
⎠ . (25)
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Let
c = (C11, C12, C13, C21, C22, C23, C31, C32)

T . (26)

Using the measured corresponding points in the world and in the image, the fol-
lowing system of equations is obtained,

D · c =⎛
⎜⎜⎜⎜⎜⎝

X1 Y1 1 0 0 0 −u1X1 −u1Y1

0 0 0 X1 Y1 1 −v1X1 −v1Y1

X2 Y2 1 0 0 0 −u2X2 −u2Y2
...

...
...

...
...

...
...

...
0 0 0 XN YN 1 −vNXN −vNYN

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

C11

C12

C13
...

C32

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

u1

v1
u2

...
vN

⎞
⎟⎟⎟⎟⎟⎠

= f.

(27)

As you can see, at least four points (Xi, Yi) in the world are needed to determine
C. However, the solution will obviously be more certain the more points we
measure. Just as before, in Equation (23), the solution becomes

c = D†f. (28)

After this calibration, where the matrix C has been determined, we will be able to
predict how a point in the world (X, Y, Z = 0)T is transformed to a point in the
image (u, v)T . As opposed to the general case in section 2.3, here we also know
that a point (u, v)T in the image corresponds to a certain point in the world.

3 Some mathematical tools

3.1 Least squares solution with the pseudo-inverse method

Consider the systems of equations in (22) and (27). These systems of equations
are over-determined in the general case. Suppose that we have measured the points
(Xi, Yi, Zi) (or (Xi, Yi)) and (ui, vi), for 1 ≤ i ≤ N . Then

f = Dc+ E, (29)

where E are the errors caused by inaccuracies in the measurements. Let us now
minimize the square of the sum of the errors, i.e.

ETE = (f −Dc)T (f −Dc)

= (fT − (Dc)T )(f −Dc) = (fT − cTDT )(f −Dc)

= fTf − cTDTf − fTDc+ cTDTDc

= fTf − 2cTDTf + cTDTDc. (30)
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The minimum will be located where the derivatives depending on c are zero, i.e.

0 = −2DTf + 2DTDc, (31)

which gives
c = (DTD)−1DTf = D†f, (32)

where D† is called the pseudo-inverse of D. The pseudo-inverse is received in
MATLAB using:
D_ps_inv = pinv(D);

3.2 Solution of a homogeneous system of equations using SVD

Here we will show a general method for solving a homogeneous system of equa-
tions,

Xb = 0 (33)

The method uses SVD which means singular value decomposition. The method
is, for example, used in [6] and [7]. It can be shown that an arbitrary matrix X
can be written

X = USV T , (34)

see for example [2], [3] or [5]. The matrices U and V T are orthonormal, i.e.
U · UT = E and V · V T = E, where E is the identity matrix. For orthonormal
matrices, the row and column vectors are orthogonal. S is a diagonal matrix.

Suppose that X is a 4× 3-matrix. Then
⎛
⎜⎜⎝

x11 x12 x13

x21 x22 x23

x31 x32 x33

x41 x42 x43

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

σ1 0 0
0 σ2 0
0 0 σ3

0 0 0

⎞
⎟⎟⎠

⎛
⎝ v11 v21 v31

v12 v22 v32
v13 v23 v33

⎞
⎠ .

We now rewrite Equation (33) as

X · b = 0

USV T b = 0

UTUSV T b = UT0 = 0

SV T b = 0
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Set b = μv3 = μ(v13, v23, v33)
T . This gives⎛

⎜⎜⎝
σ1 0 0
0 σ2 0
0 0 σ3

0 0 0

⎞
⎟⎟⎠

⎛
⎝ v11 v21 v31

v12 v22 v32
v13 v23 v33

⎞
⎠μ

⎛
⎝ v13

v23
v33

⎞
⎠ = μ

⎛
⎝ 0

0
σ3

⎞
⎠ ,

where μ is an arbitrary constant and the last equal sign is given by the orthonor-
mality of the rows and columns in V . In the general case, σ3 is replaced with σn

and according to the definition, σi > σi+1. The smaller σn, the better solution,
and σn = 0 solves Xb = 0 perfectly. Consequently, the solution to Equation (33)
is

b = μvn = μ(v1n, v2n, ..., vnn)
T . (35)

The corresponding MATLAB code becomes:
[U,S,V] = svd(X)
b = V(:,n);
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