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Abstract

This document describes equations and relations needed for the
panorama stitching assignment in the course TSBB09 Image Sensors.
We define the camera calibration matrix and rotational homographies,
and solve the Orthogonal Procrustes problem. We also describe the
axis-angle parametrisation, points on the unit sphere, and spherical
coordinates.

1 Image Plane and Image Grid

The image plane is the 3D plane where the image sensor is located, see figure
1. By the image grid we instead mean the grid of image pixels grabbed by the
sensor. Whereas the image plane has physical dimensions, the dimensions
of the image grid are measured in numbers of pixels. The camera coordinate
system (CCS) is a 3D coordinate system centred in a point known as the
optical centre, see figure 1. In the ideal pin-hole camera, the optical centre
is the pin hole, and for the ideal thin lens camera, the optical centre is the
centre of the lens. Conversions between CCS coordinates and image grid
coordinates (hereafter image coordinates) are performed using the camera
calibration matrix.

The camera calibration matrix K is a 3× 3 matrix which maps a point
X ∈ R3 in the CCS to image coordinates according to:

x̃ ∼ KX . (1)

Here x̃ = (sx, sy, s)T ∈ P2 is the homogeneous representation of an image
point x = (x, y)T ∈ R2.
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Figure 1: Left: Ideal image plane (where the sensor is located), the camera
view-vector (or forward vector) is Z. Right: Real image grid (where the
pixels live).

The camera calibration matrix is often parameterized as:

K =

K11 K12 K13

K21 K22 K23

K31 K32 K33

 =

asf γ cx
0 sf cy
0 0 1

 . (2)

Here f is the focal length, see figure 1, which is measured in e.g. mm, s is a
scale factor that defines the relation between mm and pixels. Consequently,
sf is the focal length measured in pixels. Moreover, γ is the skew, a is the
aspect ratio, and c = (cx , cy)

T is the projection of the optical centre onto
the image grid. Using the parametrization of K as in (2), (1) can be written:

xy
1

 ∼
xZyZ
Z

 =

K11 K12 cx
0 K22 cy
0 0 1

XY
Z

 . (3)

The image width and height are denoted w and h, respectively. We can
extract the offset of the optical centre from the geometrical centre in the
image as

horizoff = tan−1((w/2− cx)/K11) and (4)

vertoff = tan−1((h/2− cy)/K22) . (5)
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We can also extract the horizontal and vertical fields of view as

θFOV = 2 tan−1(w/2/K11) and (6)

φFOV = 2 tan−1(h/2/K22) . (7)

Proof:
See figure 1. For simplicity, assume that horizoff = vertoff = 0. Then the
points pi = (wi/2, 0, f)T and pr = (cx + w/2, cy, 1)T . Therefore

Z

cx + w/2
cy
1

 =

K11 K12 cx
0 K22 cy
0 0 1

wi/20
f


The first row gives Z(cx + w/2) = K11wi/2 + cxf and the third row gives
Z = f . Therefore f(cx +w/2) = K11wi/2 + cxf , which gives wi = wf/K11.
Finally, θFOV = 2 arctan(wi/(2f)) = 2 arctan(w/(2K11)).
Similarly, φFOV = 2 arctan(h/(2K22)).
Q.E.D.

2 Rotational Homographies

For two cameras that share the same optical centre, a 3D point, X̃ ∈ P3,
is imaged as shown in figure 2. If we denote the two camera projection
operators by P1 and P2, we get:

x̃1 ∼ P1X̃ and x̃2 ∼ P2X̃ . (8)

In general, a camera projection operator is written as:

P = K [R t] , (9)

where K is the camera calibration matrix, and R, t specifies the location of
the optical centre of the camera in some world coordinate system (WCS).

Since the two cameras in figure 2 share the same optical centre, we can
simplify calculations by choosing the WCS origin as the optical centre. This
gives us:

x̃1 ∼ P1X̃ = K [R1 0] X̃ = KR1X and x̃2 ∼ KR2X . (10)

Now, assume the existence of a homography H21 that maps points from
image 2 to image 1 according to:

x̃1 ∼ H21x̃2 . (11)
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Figure 2: Rotation geometry.

If we insert the expressions from (10) we get

KR1X ∼ H21KR2X , (12)

which is satisfied when

H21 = KR1R
T
2 K
−1 . (13)

Since the choice of the point X was arbitrary, we have now proven the
existence of the homography H21. A homography induced by a pure rotation
about the optical centre is known as a rotational homography, and the form
derived in (13) will be needed in the panorama stitching assignment.

Finally, in order to clarify any misunderstandings, we write equation
(11) in an expanded version,x1

y1

1

 ∼
x1s
y1s
s

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x2

y2

1

 , (14)

where x̃1 = (x1, y1, 1), x̃2 = (x2, y2, 1) and

H21 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 . (15)

3 The Orthogonal Procrustes problem

Consider two sets of 3D points X =
(
X1 . . . XN

)
and Y =

(
Y1 . . . YN

)
.

The points are related with an orthonormal matrix R, according to

Xk = RYk + εk , (16)
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where εk is an additive Gaussian noise term.

Finding R is called the Orthogonal Procrustes problem [1], and is nor-
mally formulated as:

arg min
R
||X−RY||2 subject to RRT = I . (17)

The solution to (17) is found using the singular value decomposition (SVD),
UDVT , of XYT . The singular value decomposition gives that U and V
are orthonormal matrices and D is a diagonal matrix. The matrix R that
minimises (17) can now be found as R = UVT .

Proof: The trace (tr) of a matrix is the sum of its diagonal elements. We
need to make use of the fact that tr(AB) = tr(BA), and tr(A) = tr(AT ),
when A is a square matrix. Now we can rewrite the term to minimise in
(17) as:

min
R

tr
[
(X−RY)(X−RY)T

]
= (18)

min
R

tr(XXT )− tr(YYT )− 2tr(RYXT ) . (19)

As the first two terms of (19) do not contain R, this is equivalent to:

max
R

tr(RYXT ) . (20)

We now define the SVD of XYT to be XYT = UDVT . Consequently
YXT = VDUT and we get:

max
R

tr(RVDUT ) = max
R

tr(UTRVD) . (21)

As R, U, and V all are orthonormal matrices, the maximum trace is tr(D),
and is obtained for R = UVT , which is an orthonormal matrix. �

4 Axis-Angle Representation

An important result in 3D geometry is that any combination of 3D rotations
may be represented as a single 3D rotation about a rotation axis n̂, with an
angle α ∈ [0, π[, see figure 3.

Note that any 3D point along n̂ will be unaffected by such a rotation.
In other words, for a rotation matrix R there exists a vector n̂ such that

n̂ = Rn̂ . (22)

We now observe that (22) is an eigenvalue equation, and thus n̂ is an eigen-
vector of R with eigenvalue 1. The other two eigenvectors, by definition
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Figure 3: Illustration of axis-angle rotation parametrisation.

have to be orthogonal to n̂. It can be shown (using Rodrigues’ rotation
formula, cross-product matrices, Euler’s formula, and matrix exponentials)
that their eigenvalues are eiα, and e−iα respectively. This is an important
result, as it allows us to determine the rotation angle, and the rotation axis
for any rotation matrix.

5 Points on the Unit Sphere

In (1) we saw that applying the camera calibration matrix to a 3D point in
the CCS gave us image coordinates. Since K is a square matrix, we can also
consider the inverse mapping:

p̃ ∼ K−1x̃ . (23)

The obtained vector p is a homogeneous quantity, and by a proper scaling
it can be made equal to any of the points on the 3D line passing through
the optical centre of the camera, and the actual 3D point X that generated
the image point x.

By choosing to normalise p̃ to have an Euclidean norm of 1, i.e. p =
p̃/||p̃||, we can interpret it as a point on the unit sphere. This interpretation
is important for the purpose of panorama generation, as we can then use
the Procrustes algorithm to find rotations between two sets of points p.
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Figure 4: Illustration of spherical coordinate systems. Left: Standard form
(24). Right: Longitude-latitude form (25).

6 Spherical Coordinates

Consider a point in 3D with the Cartesian coordinates p =
(
x y z

)T
. If

the point lies on a sphere, it satisfies the constraint r2 = x2 +y2 +z2 (where
r is the radius of the sphere) and can be expressed in spherical coordinates.

By spherical coordinates one normally means the coordinate triplet (r, φ, θ),
which expresses p as: xy

z

 =

r sin θ cosφ
r sin θ sinφ
r cos θ

 . (24)

See figure 4, left. Note that when θ ∈ {0, π}, the value of φ is arbitrary.
This means that the mapping has a singularity at these two points. For
the purpose of image resampling, it is thus convenient to instead use the
longitude-latitude form of spherical coordinates, see figure 4, right. Here
the (φ, θ, r) triplet expresses p as:

p =

xy
z

 =

r cosφ sin θ
r sinφ

r cosφ cos θ

 (25)

Here φ is the latitude coordinate, and θ is the longitude coordinate. Note
that this parametrisation instead places the two inevitable singularities at
the north and south poles (i.e. directly above and below the camera). The
longitude-latitude form of spherical coordinates is called so, as it defines a
map projection sometimes used to represent the surface of the Earth on a
flat paper, see figure 5.
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Figure 5: Illustration of spherical coordinates. Left: A world map painted
on a sphere. Right: The same map in longitude-latitude space.

7 Image Resampling to Spherical Coordinates

In order to obtain pixel values in the spherical coordinate system, we first
generate coordinates in a regular grid in (φ, θ) space, cf. figure 5, right.

For the purpose of panorama stitching, it is then convenient to trans-
form these to Cartesian 3D coordinates using (25). This allows us to change
coordinates according to the rotation between views, using matrix multipli-
cation:

p′ = Rp , (26)

where R is related to the image-to-image homography according to (13).
Finally, we can now project the points into the image, using the camera
calibration matrix K. To summarise, the full transformation from spherical
coordinates p(φ, θ) to image coordinates x = (x, y)T (where x̃ = (sx, sy, s)T )
is given by:

x̃ ∼ KRp(φ, θ) , (27)

Note that we have omitted the r coordinate from our parametrisation of p.
Since x̃ is obtained in homogeneous form, and r appears as a linear scaling
of p, the choice of r is arbitrary, and can be set to e.g. 1.
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