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Computer Exercise B. Characterization of infrared imaging 

sensors                  
 

Preparations 

 

Read The Ultimate Infrared Handbook for R&D Professionals, chapters 1 and 2. 

 

Content 

 

Part 1: Basic physics and measurement of infrared radiation. 

 

Part 2: Hands-on experiments with a live IR-camera.  In this part you will use a simple 

handheld IR-camera and do some simple experiments that illustrate some basic properties 

of IR-imaging. 

 

Part 3: Non-uniformity correction of IR-images.  Images from an IR-camera typically 

have a lower quality than a standard camera for the visible range.  This is because it is 

more difficult to implement the necessary measurement process for an IR-sensor, that 

makes each pixel produce a uniform response to an incoming uniform radiation. In this 

part of the exercise, you will find out how to deal with this problem.  

 

 

Part 1 
 

The Ultimate Infrared Handbook for R&D Professionals does not give the explicit 

formula for Plank’s radiation law for blackbodies.  Here it is 
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where M (, T) is the spectral emittance or spectral excitance. If  is given in meters it 

has a physical unit of Joule/second/meter2/meter, or Watt/meter3. T is given in Kelvin 

(K), and 

 

c is the speed of light,  

h is the Planck constant,  

k is the Boltzmann constant. 

 

In the figure below the spectral emittance is plotted as a function of  for different 

temperatures T.  Notice that the wavelength is given µ-meters and that the plot has a 

logarithmic scale both on the wavelength and the emittance. 
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For infrared sensors the emittance is measured only within certain well-specified 

wavelength bands 1 and 2, e.g., 3-5 µm and 8-12 µm for the sensors used in part 3 of 

this exercise, by integrating the spectral emittance M() in the corresponding range: 
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This means that for a specific camera, for which 1 and 2 are specified and fixed, we can 

compute the integrated emittance that can be detected by the pixel as a function of the 

temperature T of the object. It is not possible to derive an analytic expression, but it can 

be computed numerically by a simple approximation of the above integral as a finite sum.  

At your help, there is a Matlab script: 

 

part1script: contains a skeleton for a script that produces all the necessary 

computations for an approximation of the emittance in (2). You need to specify some  

parameters here. 

 

Before you come to the exercise: What are the numerical values of c, h, and k, in 

Planck’s radiation law? Give them in SI-units 

 

c =  

h= 

k = 

 

You need to give the values for these constants in the script.  Do this.  You also need to 

specify lambda1, lambda2, and n = the number of terms in the approximation of (2).   

One of the sensors you will look at in part 3 has 1 = 3.5 µm and 2 = 5 µm.  Finally, you 

need to specify for which temperatures the integrated emittance is computed and plotted.  

Start with the range 1 to 1000 K. Choose a suitable n and run part1script to compute and 

plot the integrated emittance as a function of temperature. 
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Q: What does the function look like?  Is it linear, or what? 

 

 

 

 

At some configuration this sensor can detect a maximum in-band irradiance of 40 W/m2, 

and becomes saturated for intensities above that. 

 

Q: Which temperature does this intensity correspond to? 

 

 

 

The digital output signal  [DN, digital number] increases linearly with the detected 

radiance L. For an ideal blackbody source L=M/.. Disregarding the atmospheric 

influence this is expressed in 
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where K1 is the overall system gain and  is the spectral transmission of the optics. 

Besides the source, there are additional signal contributions (due to e.g. internal 

emission) which will add a bias K0. The digital output signal µ can be transformed and 

presented in units of radiance or temperature.  

In some IR-sensors, the intensity measurement at a pixel can be done over a relative large 

wavelength range, but often it is limited by an optical filter in front of the sensor, a filter 

that defines 1 and 2. 

 

Q: How can you change the upper or lower wavelength limits to increase the temperature 

range of this sensor? 

 

The ratio between the emittance from a real source, MS, and the emittance from an ideal 

blackbody source, MBB, at the same temperature is called the spectral emissivity, S 
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If S is a constant  1 for all wavelengths the source is called a greybody for which 

L=SM/. In the general case S is a function of wavelength. Some approximate values of 

S is shown in the table (taken from http://www.eplus-innovation.com/knowledge.asp) on 

next page. 

 

 

http://www.eplus-innovation.com/knowledge.asp
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Part 2 

Hands-on experiments illustrating some basic properties of  IR-imaging.  

There are two main classes of infrared detectors: thermal detectors and photon detectors. 

The camera you will use in these experiments is based on an array with thermal detectors.  

Characteristic features for a thermal detector  

 Based on a temperature change of a response element  

 Slow response, a typical frame rate is up to 50 Hz (video rate)  

 No cooling required 

 Technically simple and cheap (compared with the photon detector) 

 Lower sensitivity than the photon detector 

 Ideal thermal detector: If radiation falls on the detector at different wavelengths 

but with constant power, and plot with output signal vs. wavelength is as follows 

 

 

 

 

 

 [DN] 

wavelength [] 
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Characteristic features for a photon detector:  

 Based on a photon-electron interaction 

 Fast response, a frame rate  10000 Hz is possible 

 Requires cooling below 80 K to give good performance in the infrared region 

 Technically complex and expensive 

 High sensitivity 

 Ideal photon detector: If radiation falls on the detector at different wavelengths 

but with constant power, a plot with output signal vs. wavelength is as follows 

 

 

 

 

 

 

 

Task 1. The default camera setting of the emissivity is 0.95, which is in good agreement 

with the emissivity of human skin ( 0.98). Use the camera to measure the apparent 

temperature of your or friends skin. Does the value seem reasonable? Can you think out 

the apparent temperature if the emissivity setting is changed to an erroneous value, e.g. 

0.30? Find out the answer using the camera!  

Task 2. A problem with imaging in the infrared region is that expensive lens materials 

like germanium have to be used, due to that the transmission of ordinary lens materials is 

very poor. Investigate the infrared transmission of the glass plate! Now compare with the 

transmission of the plastic bag. Can you find out why plastic lenses are not used in 

infrared imaging? 

Task 3. The figure below shows the spectral radiance at the temperature 25 C. The 

maximum emittance is found between 8-12 µm, which is the approximate spectral range 

for the infrared camera you are using in these hands-on experiments. As you have found 

out the camera is not able to see through e.g. the table. The “see-through” ability is 

achieved using longer wavelengths, 70 µm – 3 mm (i.e. the THz region). However, based 

on the characteristic features for a thermal detector, it should be possible to use the 

camera to “see-through” but at least two modifications of the camera probably need to be 

done. Can you find out which two?   Hints: Consider Task 2 and the figure below (you 

can also compare a motorist daytime and nighttime). 

 [DN] 

wavelength [] 
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Figure: Spectral radiance at 25 C 

 

Part 3 

 

Imaging systems based on staring arrays have high sensitivities and high frame rates 

(compared to the corresponding scanning systems). One disadvantage is that the 

sensitivities of the detector elements in the same sensor (detector signal/incident 

radiance) are different, corresponding to a type of static pixel noise (FPN, fixed pattern 

noise), which will decrease the sensor performance. This applies particularly to detector 

materials used in the infrared spectral range, where FPN is the main noise contribution.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure: Schematic sketch of different responses of some pixels in a detector array resulting in 

fixed pattern noise (for clarity the differences between the responses have been exaggerated in the 

figure).  

 

 

Useful Matlab commands  

imagesc: scales data and displays data as an image 

colormap(gray) : sets the current figure's color map to “gray”; this presentation is for 

most infrared images preferable to the root's default, whose setting instead is “jet” 

imcontrast: adjust contrast tool  

axis image: sets the aspect ratio so that width and height of the pixels are equal in size. 

A*X= B    X=A\B = inv(A)*B 
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Available m-files 

There are two m-files available for solving the tasks B-1, B-2, B-3, B-4, C-1, C-2 and C-

3: 

part3_B: to solve the tasks B-1, B-2, B-3 and B-4; calls the functions calc_C, NUC and 

id_dp. 

part3_C: to solve the tasks C-1, C-2 and C-3; calls the function id_dp  

Functions: 

calc_C: calculates correction coefficients  

NUC: performs a non-uniformity correction of a raw image  

id_dp: identifies and replaces dead pixels in an image using median filtering 

 

Sensor 1: Multispectral sensor (AIM)  

All data are loaded into Matlab workspace: load Refdata1, etc.  

A multispectral sensor collects data in several spectral bands at the same time. This 

sensor is based on a cooled MCT-detector with the spectral range 1.5-5.2 µm. The 

number of pixels in the focal plane array is 288x384. The sensor is equipped with a 

rotating filter wheel containing four band pass filters (see figure below).  

The full frame rate is 4x25 Hz. Generally the ability to detect an object increases with the 

number of spectral bands and the width of the spectral range covered by the spectral 

bands. However, having several spectral bands and a broad spectral range also makes the 

camera more technically complex – and more expensive.  

 

 
Figure: Multispectral sensor based on an MCT detector. Left: with the optics mounted; right: the 

uncovered camera with the rotating filter wheel containing four band pass filters: Filter 1 (1.55 – 

1.75 µm), Filter 2 (2.05 – 2.45 µm ), Filter 3 (3.45 – 4.15 µm), Filter 4 (4.55 – 5.2 µm) 

 

 

The data used in the exercise has been collected in the spectral band 4.55-5.2 µm (filter 

4). Refdata1, Refdata2 and Refdata3 are registrations of surface radiators (homogeneous 

surfaces) at three different temperatures. In particular FPN is a characteristic feature for 

the detector material MCT. In addition the detector array was severely degraded at the 
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time for the measurement which is reflected by a large number of bad pixels. This can be 

observed as salt and pepper in the image.  

 

Refdata1: registered surface radiator at 3.5 C during 0.8 s (288x384x20, double) 

Refdata2: registered surface radiator at 22 C during 0.8 s (288x384x20, double) 

Refdata3: registered surface radiator at 34 C during 0.8 s (288x384x20, double)  

Scenedata: registration of “Slestadsrondellen” during 0.8 s (288x384x20, double) 

 

 

A. Plotting the sensor data 
 

A-1. Plot an image of an area radiator (e.g. the first image in the first reference data set, 

Refdata1) and look at the pixel values over the array. An ideal sensor would only show 

the temporal noise, which can be observed as random pixel fluctuations over the array. 

Does the pixel noise seem to be randomly distributed over the array? 

 

The integrated radiances for the temperatures 3.5, 22.5, 33.5 C are 0.809, 1.58 and 2.25 

[W/(m2,sr)], respectively.   

 

A-2. Plot the pixel means vs. the integrated radiances for the reference data sets. The 

pixel mean is estimated by averaging the pixels over the array in the first image in the 

data set (the difference between using only the first image and all 20 images in the 

calculation is here negligible). The mean pixel value should be linear to the radiance 

level. One can expect that the mean pixel value  0 at a radiance level = 0  the curve is 

a line through the origin. Is the curve a line through the origin ? If not, can you find any 

explanation ?   

(Hint: For an ordinary digital camera the optical power on the detector is close to zero 

when the lens is covered, but what about an infrared camera ?) 

 

A-3. Identify the row and column numbers for 2-3 bad pixels (”salt and pepper”) and 2-3  

“normal” pixels. Plot the single pixel values against the pixel means for the three levels 

and compare the results for bad pixels (”salt and pepper”) and “normal” pixels.  

 

A-4. Plot also some single pixel values over time (there are 20 time points in each data 

set). The temporal noise for a bad pixel which is truly dead (a pixel showing one constant 

value) is of course zero. Try to find one or more bad pixels (“salt and pepper”) where the 

value is not constant over time. Compare the temporal noise for these bad pixels with 

“normal” pixels. Is there any difference? 

 

Summary of A  
In an ideal sensor all pixels have the same response and the same temporal fluctuation 

(variance). As has been shown a real sensor is not ideal. The non-ideality also concerns 

sensors in the visual region, but here the non-uniformity is small compared to sensors in 

the infrared. Different methods are available to perform non-uniformity corrections 

(NUC). Below a method based on polynomial fitting is presented [1].  
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B. Reference based NUC   
 

As has been shown under A, the response curve of a single pixel tends to be non-linear. 

An algorithm for polynomial fitting has been proposed by Schultz and Caldwell [2]. For 

pixel j the difference Yj between the pixel value Yj and the mean value Y of the N 

detectors in the array is fitted by the nth order polynomial of Y according to 

c

j

i
n

i

ijjj YYCYYY  
0

      j=1,2 ... N      (5) 

where 
c

jY is the estimated correction term. The corrected pixel value is denoted 
c

jY and is 

obtained as 
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If a second degree polynomial is used, the approximation (5) turns into 
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To estimate the coefficients Cij, homogeneous radiating surfaces are registered at n+1 

radiation levels (=3 for a 2nd degree polynomial). By eliminating Y  from (7), see 

Appendix A, the corrected value 
c

jY  is obtained 
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The figure below shows schematic sketches of non-uniformity corrections with nth order 

polynomials. 

 

 

 

 

 

 

 

 

 

 
Figure: non-uniformity corrections. Upper: uncorrected data; lower left: a 0th order correction; 

lower middle: a 1st order correction; lower right: a 2nd order correction 
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Ideally, the highest polynomial degree should give the best correction. One reason why 

this may not apply to all pixels is that the fixed pattern noise is not totally fixed but 

changes over time. A schematic example is shown in the figure below: 

 

 

             

 

 

 

 

 

 

Figure: A non-uniform correction using a 2nd degree polynomial; the blue line marks an average 

pixel’s response. The offset and the slope are corrected (right) but due to pixel drift the 2nd order 

correction has made the correction worse. In this case a better result had been obtained by a 1st 

order polynomial.  

 

In B-1, B-2 and B-3 below, a rawdata image is compared with the results after a NUC 

using a 0th-degree (offset), a 1st-degree (linear) and a 2nd degree (square) polynomial 

fitting. By visual inspections, assign values on a (relative) 10 degree-scale in the table 

following B-3, where the raw image is given the value = 1, and a fictive “perfect” image 

(=an image where all pixels seem to have exact the same response) the value = 10.  

 

B-1. Plot a scene image (raw data image). 

B-2. Plot a NU corrected scene image. Compare the NUC results using offset, 1st degree 

and 2nd degree polynomial fitting. Use the Matlab command “imcontrast” to adjust the 

contrast in the images. Are there any differences?  

Store the calibration coefficients and image data by proper names for later use in C, e.g. 

for a 0th-degree polynomial fitting: C0 (= the calibration coefficients) and OI_c0 (the 

corrected image). 

B-3. Repeat B-2 with identification and replacement of the dead pixels using median 

filtering. The difference between raw data pixels and median filtered pixels is used for 

identification of the dead pixels. A pixel is defined as a dead pixel if the difference 

rawdata pixel - median filtered pixel > K, where K is an arbitrary value that is varying 

between datasets and/or sensors. For the distributed dataset a K value = 1000 gives a 

good result. The value of the bad pixel is replaced with the corresponding pixel value in a 

median filtered image.  

You do not need to store the data generated under B-3.  

 

A pixel’s non-uniform 

response at time point 

t1 

The nonuniform 

pixel’s response at 

time point t2  

The corrected 

pixel’s response 

at time point t2 

using reference 

data from time 

point t1 

incident radiance incident radiance incident radiance 

output 

signal 
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 Point (1-10) 

Image data  Visual inspection 

Raw  1 

NUC 0th   

NUC 1st   

NUC 2nd   

NUC 0th + dp repl  

NUC 1st + dp repl  

NUC 2nd + dp repl  

 

B-4. For the distributed dataset a difference between rawdata pixels and median filtered 

pixels > 1000 gives a good result. Repeat B-3 with the following bad pixel definition: 

rawdata pixels – median filtered pixels > 100000. For clarity, use raw data as input data. 

The amount of  ”salt and pepper” in the image now has become larger. On the other hand 

a too low value on the difference will cause a number of ”normal” pixels to be identified 

and defined as bad pixels  – and replaced. To identify and replace bad pixels is a 

compromise between minimization of the amount of salt and pepper in the image and 

retention of as much of the original information as possible.   

B-5. Median filtering is the method used to identify the dead pixels in B-3. Can you find 

out other methods to identify dead pixels?  

Hint: see e.g. example A-4: Compare the temporal noise between dead pixels and other 

pixels. Are there any differences ?  In B-2 values of the coefficients were calculated. Are 

there any differences between dead pixels and other pixels?   

 

C.   Image quality measures  
 

A NUC will never be perfect and residual fixed pattern noise will therefore be added to 

the temporal noise: 

 
222

spattemptot            (9) 

In B-1 – B-3 the quality of the NUC methods was evaluated by a visual inspection. 

However, if the amount of data is large, a substantial time may be needed to select the 

most optimal NUC methods by visual inspections. In addition, by a (subjective) visual 

inspection, it is not always obvious which NUC method is the most optimal and therefore 

the results will depend on the individual observer. Root-mean-square error (RMSE), 

UIQI or Q (universal image quality index) and roughness () are four proposed measures 

of the goodness of the NUC to describe the quality of the correction with an objective 

number instead of a (subjective) visual inspection.  

Collect the results you obtain in C-1 – C-3 in the table after C-3. 
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C-1. RMSE 

 

RMSE [4] measures the improvement by a NUC. RMSE is defined as the square root of 

the average (over the entire array and block of frames) of the square of the difference 

between the corrected (the “true”) pixel signal and the non-corrected pixel signal 
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N

j

jj xy
N

RMSE
1

21
        ; [RMSE  0]    (10) 

 

where xj denotes a pixel in the uncorrected image. With no improvement RMSE = 0. 

 

C-1a. Calculate RMSE in an image from Scenedata, before and after NUC including 

replacement of bad pixels. Cut the upper right corner in the image before the calculation 

( the columns 351-384) which contains the cluster with bad pixels.  

 

 

C-2. UIQI 

 

The universal image quality index UIQI (also denoted Q) [5] measures the improvement 

by an NUC and compares the image before (x) and after (y) a NUC. UIQI is expressed in 

the following equation 
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where x , y ,  x  and y  are the mean and standard deviation of both images. With no 

improvement Q = 1. (18) can be rewritten  
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The first component is the correlation coefficient between x and y. The second 

component measures the relative difference between x and y. The third component 

measures the contrast difference between the images.  

 

C-2a. Calculate Q in an image from Scenedata, before and after NUC including 

replacement of bad pixels. Cut the upper right corner in the image before the calculation 

( the columns 351-384) which contains the cluster with bad pixels.  

 

C-3. Roughness  

The roughness  [6] for an image is defined 
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 
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where h1 is a horizontal mask [1, -1], h2 = 
Th1 a vertical mask, 

1
y is the L1 norm of the 

image = the sum of the magnitudes of all pixels. For a uniform image  = 0, and 

increases with the pixel-to-pixel variation in the image. 

C-3a. Calculate   in an image from Scenedata, before and after NUC including 

replacement of bad pixels. Cut the upper right corner in the image before the calculation 

( the columns 351-384) which contains the cluster with bad pixels.  

 

 

Image data  RMSE Q  

Raw                          0 1  

NUC 0th                      

NUC 1st     

NUC 2nd     

NUC 0th + dp repl       

NUC 1st + dp repl             

NUC 2nd + dp repl          

 

 

D. Discussion section B and C 
 

In practice a NUC based on a 1st degree polynomial is most common, followed by an 

offset correction. A 2nd degree polynomial fitting is not used as often, why ?  

 

What is the basic difference between the three image quality metrics studied in this 

exercise, considering eq. (10), (11) and (13) ? 

Which quality measure is in best agreement with your visual inspection in B? 

The quality metrics RMSE and Q compare two images and return values of the change, 

instead of absolute values. Do these metrics tell if a change is positive or negative ? If 

(raw) scene data and reference data are registered at different time points they may not 

match each other and in this case a reference based NUC will distort the scene data. Can 

you find out a solution to this problem? 
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E. Comparison with a standard camera 

 
In the previous sections you have been looking at image data collected with a quite old 

infrared camera. The quite noisy data made it easier to see differences before and after 

the correction steps. In this section, you will compare with an infrared camera that is 

more representative of a standard infrared camera. 

Data are found under ‘Multiband’ and are loaded into Matlab workspace as before: load 

Refdata1, etc.  

 

E-1. Plot a scene image (raw data image) and make a visual comparison with a scene 

image from the first camera 

 

E-2. Residual non-uniformity (RNU) is a measure used to quantify fixed pattern noise in 

image data from uniform surface radiators. It is defined  

 

𝑅𝑁𝑈 =
𝑠𝑝𝑎𝑡

𝐷𝑅
 100%                        

 

where DR is the dynamic range, which is 214 for both cameras.  

 

Use Refdata2 (both cameras). In a first step the data is averaged over time so that most of 

the temporal noise is eliminated. In a second step the standard deviation gives the spatial 

noise spat. In camera 1 the columns 351-384 contains a cluster with bad pixels in the 

upper right corner which are excluded in the calculation of spat. In camera 2 the first row 

contains a time code in the upper right corner which is excluded in the calculation of 

spat. Using Matlab, spat is calculated in the following way  

 

𝑅𝑒𝑓𝑑𝑎𝑡𝑎𝑇𝑒𝑚𝑝𝐴𝑣𝑒 = 𝑚𝑒𝑎𝑛(𝑅𝑒𝑓𝑑𝑎𝑡𝑎2,3);                    
 

𝐶𝑎𝑚𝑒𝑟𝑎 1: 𝑠𝑝𝑎𝑡 = 𝑠𝑡𝑑2(𝑅𝑒𝑓𝑑𝑎𝑡𝑎𝑇𝑒𝑚𝑝𝐴𝑣𝑒𝑟(: ,1: 350))     
 

𝐶𝑎𝑚𝑒𝑟𝑎 2: 𝑠𝑝𝑎𝑡 = 𝑠𝑡𝑑2(𝑅𝑒𝑓𝑑𝑎𝑡𝑎𝑇𝑒𝑚𝑝𝐴𝑣𝑒𝑟(2: 512, : ))                        
 

A RNU value below 0.1 % is a very good result. What can you say about the FPN quality 

of the first and the second camera ? 

 

E-3. If time remains and you are interested, you can of course repeat the steps A through 

D also with the second camera. 
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Appendix A: Schultz approximation 
 

 

Schultz (polynomial fitting): 
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