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TSBB21, Lecture 6
Camera calibration 1
 Camera calibration 1

 Homogenous matrices for scaling, translation, rotation, skewing 
 The Pinhole camera model 
 Outer and inner parameters
 3D calibration of a camera 
 Calibration of a flat world, a homography
 Inhomogeneous and homogeneous solutions.
 Camera resectioning

 Literature
 ”Short about camera geometry and camera calibration”

by Maria Magnusson

 Alternative Literature
 Parts of …

”Introduction to Representations and Estimation in Geometry”
(IREG) by Klas Nordberg

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linköping University
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Transformation
with homogenous matrices
 A point in the 3D-world can be described in 

homogenous coordinates as (X,Y,Z,1)T. It  can be 
transformed to a new point (X1,Y1,Z1,1)T by using 
the 4x4-matrix M according to:

p. 2

𝑋ଵ

𝑌ଵ

𝑍ଵ

1

= 𝐌 ⋅

𝑋
𝑌
𝑍
1

=

𝑚ଵଵ 𝑚ଵଶ 𝑚ଵଷ 𝑚ଵସ

𝑚ଶଵ 𝑚ଶଶ 𝑚ଶଷ 𝑚ଶସ

𝑚ଷଵ 𝑚ଷଶ 𝑚ଷଷ 𝑚ଷସ

0 0 0 1

⋅

𝑋
𝑌
𝑍
1

Translation

𝐓 𝑡௫, 𝑡௬, 𝑡௭ =

1 0 0 𝑡௫

0 1 0 𝑡௬

0 0 1 𝑡௭

⋯ ⋯ ⋯ ⋯
0 0 0 1

A homogeneous matrix 
for translation

𝑋 + 𝑡௫

𝑌 + 𝑡௬

𝑍 + 𝑡௭

1

=

1 0 0 𝑡௫

0 1 0 𝑡௬

0 0 1 𝑡௭

0 0 0 1

⋅

𝑋
𝑌
𝑍
1

Note:
A normal 3x3-matrix will
not work for translation!

Example:

Eq. (5)

p. 3

Scaling

Homogenous matrices
for scaling and skewing

𝐒 𝑠௔, 𝑠௕, 𝑠௖ =

𝑠௔ 0 0 0
0 𝑠௕ 0 0
0 0 𝑠௖ 0
⋯ ⋯ ⋯ ⋯
0 0 0 1

Skewing in the 
x-direction 

depending on 
the y-coordinate

General skewing

Eq. (3) Eq. (10) Eq. (11)

p. 4

1 𝑎 0 0
0 1 0 0
0 0 1 0
⋯ ⋯ ⋯ ⋯
0 0 0 1

1 𝑎 𝑏 0
𝑐 1 𝑑 0
𝑒 𝑓 1 0
⋯ ⋯ ⋯ ⋯
0 0 0 1
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𝐑௫ =

1 0 0 0
0 cos 𝜃 − sin 𝜃 0
0 sin 𝜃 cos 𝜃 0
⋯ ⋯ ⋯ ⋯
0 0 0 1

𝐑௭ =

cos 𝜃 − sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0

0 0 1 0
⋯ ⋯ ⋯ ⋯
0 0 0 1

𝐑௬ =

cos 𝜃 0 sin 𝜃 0
0 1 0 0

− sin 𝜃 0 cos 𝜃 0
⋯ ⋯ ⋯ ⋯
0 0 0 1

Rotation with the angle q
around the x-axis

Homogeneous matrices
for rotation

Eq. (9)Eq. (8)

Eq. (7)

Rotation with the angle q
around the y-axis

Rotation with the angle q
around the z-axis

p. 5

The Lens law (repetition)

The lens law:

1

𝑎
+

1

𝑏
=

1

𝑓

The lens law states that if the image plane is located 
at the distance b from the lens, then the object at 
distance a from the lens will give a sharp image.
Note that since normally  a>>b  =>  b≈f. 

where f is the 
focal length

object lens

image planeA

B

Size relations:

𝐴

𝑎
=

𝐵

𝑏
≈

𝐵

𝑓

p. 6

The image plane is 
located behind the lens!

The pinhole camera model,
real geometry

Fig. 1

p. 7

/ pin-hole

The image
plane is 
mirrored
so that it
is located 
in front of 
the lens.

Relation between the 
coordinates of the two 
coordinate systems:

𝑊 𝑢௡, 𝑣௡, 1 ் = 𝑊
𝑢௜

𝑓
,
𝑣௜

𝑓
, 1

்

= 𝑈, 𝑉, 𝑊 ் = 𝐑𝐭 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

The pinhole camera 
model, mirrored

Fig. 2

E
q.

 (
12

)

Here we use the notation:
ideal image plane

with coordinates (ui ,vi).
Alternatively the notation

normalized image plane
with coordinates

(un ,vn)=(ui /f, vi /f)
may be used.

ideal
image
plane

p. 8



3

𝑣௡ =
𝑣௜

𝑓
=

𝑉

𝑊

𝑢௡ =
𝑢௜

𝑓
=

𝑈

𝑊

   ⇒   𝑊
𝑢௜

𝑓
,
𝑣௜

𝑓
, 1

்

= 𝑈, 𝑉, 𝑊 ்

Uniform 
triangles gives:

Technique to express perspective
transformation with vectors

Fig. 3

Eq. (14)

un and vn are
the norma-
lized image
coordinates

p. 9

Relation between the ideal image 
plane and the real image plane

Eq. (15)

measured
in pixels

𝑢, 𝑣, 1 ் = 𝐀 ⋅
𝑢௜

𝑓
,
𝑣௜

𝑓
, 1

்

p. 10

measured
in e.g. mm

posi-
tion

Relation between the
image planes: 𝑢, 𝑣, 1 ் = 𝐀 ⋅

𝑢௜

𝑓
,
𝑣௜

𝑓
, 1

்

𝑢, 𝑣, 1 ் 𝑠 𝑢, 𝑣, 1 ் = 𝐀 𝐑𝐭 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

Note that s replaces W as
“perspective projection parameter”

equivalence

Relation between world coordinates 
and real image coordinates

Relation between the 
coordinate systems: 𝑊

𝑢௜

𝑓
,
𝑣௜

𝑓
, 1

்

= 𝑈, 𝑉, 𝑊 ்

           = 𝐑𝐭 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

Relation between
world coordinates
and real image
coordinates:

Eq. (15)

Eq. (12)

Eq. (18)

p. 11

Unambiguousness, field of view 
(FOV) and resolution

 The parameters W and s are 
not unambiguously deter-
mined. Both the big ball and 
the small ball gives the same 
contour in the (ui,vi)-plane. 
Consequently, we cannot 
know W.

 Therefore we can also 
change W to s in the 
previous slide.

 It is appropriate to measure 
the field of view (FOV) as the 
largest measurable angle in 
the U- and V-direction. (see 
e.g. Lab exercise E: 
Panorama stitching)

 The resolution of an object in 
an image depends on the 
distance from the camera. 
The resolution in the U-
direction can, for example, 
be measured as the FOV 
angle/the number of pixels.

FOV angle in 
the i U-direction

plane

p. 12
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Inner parameters Outer parameters

Inner and outer parameters

p. 13

𝑢, 𝑣, 1 ் 𝑠 𝑢, 𝑣, 1 ் = 𝐀 𝐑𝐭 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

Relation between world coordinates
and real image coordinates:

The outer parameters
for a camera at a fix position

can be determined through 
a calibration procedure.

The inner parameters
for a camera

can be determined through 
a calibration procedure.

𝑈, 𝑉, 𝑊 ் =

 𝐑𝐭 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

𝐑𝐭 =

𝑟ଵଵ 𝑟ଵଶ 𝑟ଵଷ 𝑡ଵ

𝑟ଶଵ 𝑟ଶଶ 𝑟ଶଷ 𝑡ଶ

𝑟ଷଵ 𝑟ଷଶ 𝑟ଷଷ 𝑡ଷ

(t1,t2,t3): the translation of the camera in relation to the world 
R:         the rotation of the camera in relation to the world

Outer parameters
Relation between

the coordinate systems:

Eq. (12) Eq. (13)

p. 14

b: scaling in the v-direction 
a: scaling i the u-direction
g: skewing (lack of orthogonality between horizontal and vertical axes)

(often close to 0)
(u0,v0): the cross-section between the optical axis and the real image plane

Inner parameters
Relation between
the image planes:

𝑢, 𝑣, 1 ் = 𝐀 ⋅
𝑢௜

𝑓
,
𝑣௜

𝑓
, 1

்

𝐀 =

𝛼 𝛾 𝑢଴

0 𝛽 𝑣଴

0 0 1

Eq. (15)

Eq. (16)

real
image
plane

measured
in pixels

ideal
image plane

measured
in e.g. mm

p. 15

 𝑢, 𝑣  𝑢௜, 𝑣௜

𝐴) 𝑢଴, 𝑣଴ 0,0

𝐵) 𝛼 + 𝑢଴, 𝛽 + 𝑣଴ 𝑓, 𝑓

𝑢
𝑣
1

=

𝛼 𝛾 𝑢଴

0 𝛽 𝑣଴

0 0 1

𝑢௜ 𝑓⁄

𝑣௜ 𝑓⁄

1

Inner parameters, ex) with g=0
𝑣

𝑢

𝑣଴

(u0,v0): the cross-section between the optical axis and the real image plane, 
the image center, the principal point.
a and b denotes the scaling i the u- and v-direction, respectively.
If a = b, the pixels are quadratic.
If a ≠ b, the pixels are rectangular, but not quadratic.

𝑢଴

𝛼

𝛽

𝐴)

𝐵)

p. 16
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 𝑢, 𝑣  𝑢௜, 𝑣௜

𝐴) 𝑢଴, 𝑣଴ 0,0

𝐵) 𝛼 + g + 𝑢଴, 𝛽 + 𝑣଴ 𝑓, 𝑓

𝑢
𝑣
1

=

𝛼 𝛾 𝑢଴

0 𝛽 𝑣଴

0 0 1

𝑢௜ 𝑓⁄

𝑣௜ 𝑓⁄

1

Inner parameters, ex) with g ≠ 0

𝑣

𝑢

𝑣଴

𝑢଴

𝛼

p. 17

𝛽

𝐴)

𝐵)

𝜉 = atan
𝛾

𝛽

𝛾

g is the skewing parameter
x =arctan(g/b) gives an angular measurement 
x is normally small, i.e. close to 0 degrees

3D calibration of a camera

Eq. (18)

Eq. (17)𝑠 𝑢, 𝑣, 1 ் = 𝐀 𝐑𝐭 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

We will first determine C, only.
Later, we will learn how to determine A, R and t.

𝑠 𝑢, 𝑣, 1 ் = 𝐂 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

Depending on the variable s, 
C can only be determined up to
a scale factor, say l.

𝐂 =
𝐶ଵଵ 𝐶ଵଶ 𝐶ଵଷ 𝐶ଵସ

𝐶ଶଵ 𝐶ଶଶ 𝐶ଶଷ 𝐶ଶସ

𝐶ଷଵ 𝐶ଷଶ 𝐶ଷଷ 𝐶ଷସ

p. 18

We have now two possibilites, 
either make an inhomogeneous or an homogeneous solution. 

3D calibration,
the inhomogeneous solution
 Set C34 = 1. (If C34 seems to be 0, another 

element can be set to 1.)

The matrix C can be determined by measuring a 
number of corresponding point (how many?) in the world
(Xi, Yi, Zi) and the image (ui, vi), where 1 i  N.

𝐂 =
𝐶ଵଵ 𝐶ଵଶ 𝐶ଵଷ 𝐶ଵସ

𝐶ଶଵ 𝐶ଶଶ 𝐶ଶଷ 𝐶ଶସ

𝐶ଷଵ 𝐶ଷଶ 𝐶ଷଷ 𝟏
Eq. (20)

p. 19
𝑠 𝑢, 𝑣, 1 ் = 𝐂 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

𝐂 =
𝐶ଵଵ 𝐶ଵଶ 𝐶ଵଷ 𝐶ଵସ

𝐶ଶଵ 𝐶ଶଶ 𝐶ଶଷ 𝐶ଶସ

𝐶ଷଵ 𝐶ଷଶ 𝐶ଷଷ 𝟏

𝐜 = 𝐶ଵଵ, 𝐶ଵଶ, 𝐶ଵଷ, 𝐶ଵସ, 𝐶ଶଵ, 𝐶ଶଶ, 𝐶ଶଷ, 𝐶ଶସ, 𝐶ଷଵ, 𝐶ଷଶ, 𝐶ଷଷ

𝐃 ⋅ 𝐜 =

𝑋ଵ 𝑌ଵ 𝑍ଵ 1 0 0 0 0 −𝑢ଵ𝑋ଵ −𝑢ଵ𝑌ଵ −𝑢ଵ𝑍ଵ

0 0 0 0 𝑋ଵ 𝑌ଵ 𝑍ଵ 1 −𝑣ଵ𝑋ଵ −𝑣ଵ𝑌ଵ −𝑣ଵ𝑍ଵ

𝑋ଶ 𝑌ଶ 𝑍ଶ 1 0 0 0 0 −𝑢ଶ𝑋ଶ −𝑢ଶ𝑌ଶ −𝑢ଶ𝑍ଶ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 𝑋ே 𝑌ே 𝑍ே 1 −𝑣ே𝑋ே −𝑣ே𝑌ே −𝑣ே𝑍ே

𝐶ଵଵ

𝐶ଵଶ

𝐶ଵଷ

⋮
𝐶ଷଷ

=

𝑢ଵ

𝑣ଵ

𝑢ଶ

⋮
𝑣ே

    
= 𝐟

11 equations give that at least 6 point-pairs (“5½”) is needed to determine C

Inhomogeneous
solution

Eq. (22)

Set: Eq. (21) Eq. (20)
Eq. (19)



6

Show Eq. (21)

p. 21

𝐃 ⋅ 𝐜 = 𝐟
𝐃்𝐃 ⋅ 𝐜 = 𝐃்𝐟

𝐜 = 𝐃்𝐃 ି𝟏𝐃்𝐟

𝐜 = 𝐃ା𝐟

D+ is the so called pseudo-inverse of D.
This is the Least Square solution of the equation system.
This is also equivalent to Maximum Likelihood-minimization.

If we measure more than 5½ point-pairs, the equation 
system becomes over-determined with the solution:

If we measure 5½ point-pairs, we get 11 equations. 
The equation system can be solved as: 𝐜 = 𝐃ିଵ ⋅ 𝐟

More 
point-pairs 

gives a more 
certain

solution!

Eq. (23)

Solution of the equation system

D+ is 
pinv 
in 

Matlab

p. 22

3D calibration,
the homogeneous solution
 In the homogeneous solution, C34 is not set to 1. Instead C is kept as:

 To improve performance, Hartley normalization (see e.g. IREG) is used:

 (Xi, Yi, Zi)-coordinates:
 Calculate the mean and standard deviation.
 Subtract the mean, divide by the standard deviation and 

multiply with 2

 (ui, vi)-coordinates:
 Calculate the mean and standard deviation.
 Subtract the mean, divide by standard dev. and mult. with 2

 Form an equation system, see next slide.

 Solve using SVD, see next-next lecture.

p. 23

𝐂 =

𝐶ଵଵ 𝐶ଵଶ 𝐶ଵଷ 𝐶ଵସ

𝐶ଶଵ 𝐶ଶଶ 𝐶ଶଷ 𝐶ଶସ

𝐶ଷଵ 𝐶ଷଶ 𝐶ଷଷ 𝐶ଷସ

𝐂 =
𝐶ଵଵ 𝐶ଵଶ 𝐶ଵଷ 𝐶ଵସ

𝐶ଶଵ 𝐶ଶଶ 𝐶ଶଷ 𝐶ଶସ

𝐶ଷଵ 𝐶ଷଶ 𝐶ଷଷ 𝐶ଷସ

𝐜 = 𝐶ଵଵ, 𝐶ଵଶ, 𝐶ଵଷ, 𝐶ଵସ, 𝐶ଶଵ, 𝐶ଶଶ, 𝐶ଶଷ, 𝐶ଶସ, 𝐶ଷଵ, 𝐶ଷଶ, 𝐶ଷଷ, 𝐶ଷସ

𝐃 ⋅ 𝐜 =

𝑋ଵ 𝑌ଵ 𝑍ଵ 1 0 0 0 0 −𝑢ଵ𝑋ଵ −𝑢ଵ𝑌ଵ −𝑢ଵ𝑍ଵ −𝑢ଵ

0 0 0 0 𝑋ଵ 𝑌ଵ 𝑍ଵ 1 −𝑣ଵ𝑋ଵ −𝑣ଵ𝑌ଵ −𝑣ଵ𝑍ଵ −𝑣ଵ

𝑋ଶ 𝑌ଶ 𝑍ଶ 1 0 0 0 0 −𝑢ଶ𝑋ଶ −𝑢ଶ𝑌ଶ −𝑢ଶ𝑍ଶ −𝑢ଶ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 𝑋ே 𝑌ே 𝑍ே 1 −𝑣ே𝑋ே −𝑣ே𝑌ே −𝑣ே𝑍ே −𝑣ே

𝐶ଵଵ

𝐶ଵଶ

𝐶ଵଷ

⋮
𝐶ଷସ

=

0
0
0
⋮
0

Homogeneous
solution

Set:

𝑠 𝑢, 𝑣, 1 ் = 𝐂 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

Eq. (19)

Matlab solution: [U,S,V] = svd(D);
c = V(:,12);

c may then be scaled, if desired
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From C to A[Rt]
 When the matrix C is determined, it is possible 

to receive A, R and t by using a little linear 
algebra.

 This procedure is called camera resectioning.
 We will talk about that in the end of this 

lecture.

p. 25

Using the calibrated camera
 We now know how a point in the world (X,Y,Z)T will be 

mapped to a point in the image (u,v)T.
 We do not know how a point in the image (u,v)T will be 

mapped to a point in the world (X,Y,Z)T .
 But we do know that a point in the image (u,v)T

corresponds to a line in the world (X,Y,Z)T .
 From A and an object point in the image, we can calculate 

the angular direction to the corresponding object point in 
the world. Then it is possible for a movable camera to 
follow an object. Lab task!

 If we have more knowledge about the world, for example if 
it is a flat world, we know that a point in the image (u,v)T

is mapped to a point in the world (X,Y,Z)T . This is camera 
calibration of a flat world, a homography. Lab task!

 Another possibility is to use stereo, i.e. using two 
calibrated cameras. They gives one straight line, each. The 
cross-section between these lines gives the exact position 
of the point in the world.

p. 26

measured
in pixels

Calibration of a flat world,
a homography

f

Eq. (24)𝑠 𝑢, 𝑣, 1 ் = 𝐂 ⋅ 𝑋, 𝑌, 1 ்

Fig. 1.4

A point in the 
image (u,v)T

is mapped to
a point in the
world (X,Y,0)T

and vice versa.

Relation
Between
the 
coordinate
systems:

p. 27

measured
in e.g. mm

𝑠 𝑢, 𝑣, 1 ் = 𝐂 ⋅ 𝑋, 𝑌, 1 ்

𝐜 = 𝐶ଵଵ, 𝐶ଵଶ, 𝐶ଵଷ, 𝐶ଶଵ, 𝐶ଶଶ, 𝐶ଶଷ, 𝐶ଷଵ, 𝐶ଷଶ

Inhomogeneous solution
of a homography

Set:

𝐂 =
𝐶ଵଵ 𝐶ଵଶ 𝐶ଵଷ

𝐶ଶଵ 𝐶ଶଶ 𝐶ଶଷ

𝐶ଷଵ 𝐶ଷଶ 𝟏

𝐃 ⋅ 𝐜 =

𝑋ଵ 𝑌ଵ 1 0 0 0 −𝑢ଵ𝑋ଵ −𝑢ଵ𝑌ଵ

0 0 0 𝑋ଵ 𝑌ଵ 1 −𝑣ଵ𝑋ଵ −𝑣ଵ𝑌ଵ

𝑋ଶ 𝑌ଶ 1 0 0 0 −𝑢ଶ𝑋ଶ −𝑢ଶ𝑌ଶ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 𝑋ே 𝑌ே 1 −𝑣ே𝑋ே −𝑣ே𝑌ே

𝐶ଵଵ

𝐶ଵଶ

𝐶ଵଷ

⋮
𝐶ଷଶ

=

𝑢ଵ

𝑣ଵ

𝑢ଶ

⋮
𝑣ே

= 𝐟

Matlab solution: c = pinv(D)*f;

Eq. (27)Eq. (26)

Eq. (24)

Eq. (25)

𝐜 = 𝐃ା𝐟Solution as before:

8 equations give that at least 4 point-pairs is needed to determine C

p. 28
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𝑠 𝑢, 𝑣, 1 ் = 𝐂 ⋅ 𝑋, 𝑌, 1 ்

𝐜 = 𝐶ଵଵ, 𝐶ଵଶ, 𝐶ଵଷ, 𝐶ଶଵ, 𝐶ଶଶ, 𝐶ଶଷ, 𝐶ଷଵ, 𝐶ଷଶ, 𝐶ଷଷ

Homogeneous solution
of a homography

Set:

𝐂 =
𝐶ଵଵ 𝐶ଵଶ 𝐶ଵଷ

𝐶ଶଵ 𝐶ଶଶ 𝐶ଶଷ

𝐶ଷଵ 𝐶ଷଶ 𝐶ଷଷ

𝐃 ⋅ 𝐜 =

𝑋ଵ 𝑌ଵ 1 0 0 0 −𝑢ଵ𝑋ଵ −𝑢ଵ𝑌ଵ −𝑢ଵ

0 0 0 𝑋ଵ 𝑌ଵ 1 −𝑣ଵ𝑋ଵ −𝑣ଵ𝑌ଵ −𝑣ଵ

𝑋ଶ 𝑌ଶ 1 0 0 0 −𝑢ଶ𝑋ଶ −𝑢ଶ𝑌ଶ −𝑢ଶ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 𝑋ே 𝑌ே 1 −𝑣ே𝑋ே −𝑣ே𝑌ே −𝑣ே

𝐶ଵଵ

𝐶ଵଶ

𝐶ଵଷ

⋮
𝐶ଷଷ

=

0
0
0
⋮
0

Matlab solution: [U,S,V] = svd(D);
c = V(:,9);

c may then be scaled, if desired

Note: 
Hartley normalization
(see a previous slide)

may improve per-
formance! 
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Camera resectioning

p. 30

𝑢, 𝑣, 1 ் 𝐀 𝐑𝐭 ⋅ 𝑋, 𝑌, 𝑍, 1 ்  𝐂 ⋅ 𝑋, 𝑌, 𝑍, 1 ்

From previous slides: 
Relation between world coordinates and real image coordinates:

𝐀 =

𝛼 𝛾 𝑢଴

0 𝛽 𝑣଴

0 0 1
𝐑𝐭 =

𝑟ଵଵ 𝑟ଵଶ 𝑟ଵଷ 𝑡ଵ

𝑟ଶଵ 𝑟ଶଶ 𝑟ଶଷ 𝑡ଶ

𝑟ଷଵ 𝑟ଷଶ 𝑟ଷଷ 𝑡ଷ

𝐀 𝐑𝐭  𝐂
𝐂 =

𝑐ଵଵ 𝑐ଵଶ 𝑐ଵଷ 𝑐ଵସ

𝑐ଶଵ 𝑐ଶଶ 𝑐ଶଷ 𝑐ଶସ

𝑐ଷଵ 𝑐ଷଶ 𝑐ଷଷ 𝑐ଷସ

Camera resectioning
 If C is not at infinity then we can always find a unique 

decomposition of C into its internal A and external [Rt] 
parameters. This decomposition is referred to as 
camera resectioning.

 A is an upper triangular 3x3 matrix

 R is a rotational matrix, which describes rotations 
around the X, Y- and Z-axes.

 R is also an orthogonal matrix, which is a square 
matrix whose columns and rows are orthogonal unit 
vectors (i.e. orthonormal vectors), i.e. RTR=RRT=I, 
where I is the identity matrix.

 t is a translation vector, which describes a translation 
along the X, Y- and Z-axes.

p. 31

QR- and RQ-factorization
 QR-factorization decomposes a matrix B into an 

orthogonal matrix Q multiplied by an upper (or right) 
triangular matrix R.

 Matlab command: [Q,R] = qr(B);

 B and Q is m-by-n

 With a trick (see Matlab code later) an rq function can be 
formed, with Matlab command: [R,Q] = rq(B);

 In our case:
 [A,R] = rq(C(:,1:3));

p. 32

Confusion: 
R has different meanings!
The triangular R is marked

with turquoise.
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After RQ-factorization, 
we need to:
 Fix t.

 Set element (3,3) in A to 1.

 R should have det(R)=1 (no mirroring)

p. 33

Matlab code (written by Björn Johansson)

function [K,R,t] = P2KRt(P)

% [K,R,t] = P2KRt(P)

% Computes camera matrix K, rotation R, and translation t 

% fron projection matrix P. Relation:

%         P ~ K[R t]

%   P - 3/4 projection matrix

%   K - 3/3 camera matrix

%   R - 3/3 rotation matrix

%   t - 3/1 translation vector

[K,R] = rq(P(:,1:3));

t = inv(K)*P(:,4);

K = K/K(3,3);

p. 34

Note: 
A is now denoted K

C is denoted P

Matlab code
% K should have positive sign along the diagonal

D = diag(sign(diag(K)));

K = K*D;

R = D*R;

t = D*t;

% R should have det(R)=1 (no mirroring)

t = det(R)*t;

R = det(R)*R;
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Matlab code
function [R,Q] = rq(A)

% [R,Q] = rq(A)

% Orthogonal-triangular decomposition, A = R*Q, where

% R is an upper triangular matrix and 

% Q is an orthogonal matrix.

A = A';

A = A(end:-1:1,end:-1:1);

[Q,R] = qr(A);

R = R';R = R(end:-1:1,end:-1:1);

Q = Q';Q = Q(end:-1:1,end:-1:1);

p. 36


