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TSBB09 Image Sensors

Lecture X
Panorama Stitching

Equivalent cameras

• Two cameras are equivalent if they share a 
common camera centre n

• For equivalent camera matrices C and C’:

C n = 0
C’ n = 0
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Equivalent cameras

• A 3D point x is mapped by the two cameras as

y » C x
y’ » C’ x

and we have already shown that, in this case,

y’ » C’C+ y = H y
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A homography

Rotating camera

• A (rather common) special case of equivalent 
cameras appears when we have one single 
camera, with fixed internal parameters, and just 
rotate it about the camera centre

• Let the internal camera parameters be 
represented by 3 £ 3 matrix K
– Same K for both cameras

• Let 3D coordinates be defined relative to 
coordinate system with origin at n
– This means that n = [0 0 0 1]
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Rotational homography

This gives

C = K [R1 0]
C’ = K [R2 0]

• We can set R1 = I and R2 = R = the rotation from the 
coordinate system of camera 1 to the coordinate 
system of camera 2

C = K [I  0]
C’ = K [R 0]
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R1 and R2 represent the 
absolute rotation of each 
camera relative to the 3D 
coordinate system

Rotational homography

Furthermore:

C CT = K [I 0] [I 0]T KT = K KT

C’CT = K [R 0] [I 0]T KT = K R KT

Finally: H = K R KT(K KT)-1 = K R K-1
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C’ CT(C CT)-1

C+
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Summary
• We take two images with a camera that just rotates about its 

centre.  Corresponding image coordinates in the two images are 
then related as

y = H y’

where H a homography given by

H = K R K-1 ) R = K-1 H K

where R is the relative rotations between the cameras and K is the 
internal camera calibration
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If H and K can be 
determined, we 
can also 
determine R

Panorama stitching

• In panorama stitching, we have a set of 
images that are all taken from the same
view-point but in different directions

• Given that the objects in the images are far 
away this implies that the camera matrices 
are approximately equivalent
– The camera centres do not have to be exactly at 

the same point
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Panorama stitching

• Each image can be transformed into any other by a 
homography
– At least in the overlapping region in the two images

• In this region the homography can be estimated (how?)
• By applying the homography to an entire image from 

camera C’, it can the stitched onto the image from 
camera C

• Given a set of images, they can be stitched into some 
reference image in the set by determining the 
corresponding homography for each other image in the 
set relative to the reference image
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Example

• Two images
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Images from: Automatic Panoramic Image Stitching using Invariant Features,
IJCV 2007, Matthew Brown

Example
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• From a set of corresponding points

• Estimate H that relates the 2 images

Example

• Right image stitched onto the left image
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Practical issues

• The pixel values in overlapping regions may differ 
even if the geometric transformation is correct
– Vignetting effects
– Interpolation effects
– Exposure time or illumination may be different in two 

images
– Moving objects in the scene

• At each pixel:
– Take the value from only one of the two images
– Alternatively: blend
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Blending weight

• For example, use a weight that is smaller at 
the edges of the image and larger at the 
center
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This is the weight 
image before the 
homography 
transformation

Blending
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With blending

Without blending

Practical issues

• To assure a homography between any pair of 
images, we must have a pin-hole camera
– No significant amount of lens distortion
– Alternatively: lens distortion can be estimated and 

compensated for before the stitching
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Practical issues

• If the view directions between two images are 
very different, the corresponding homography 
will introduce a large amount of geometric 
distortion in the stitched image

• Proper points in one image -> points at 1 in 
another
– Map the images onto a sphere and stitch them there 

instead of in the image plane of one of the cameras
– Image points represented by unit vectors in R3

• In this case the vectors are related by the rotation 
R between the two images! 
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Mapping to spherical coordinates
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Field of view (FOV)
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Field of view (FOV)

• The two field of view angles can be computed 
from the internal camera parameters

• Assumes that the principal point (=intersection of 
the optical axis) has pixel coordinates (k13,k23)/2
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tan ®h
2
= w
2k11

tan ®v2 =
h
2k22

Images of a plane

Alternative application of the homography mapping:

Images of a 3D plane
• Facades of building
• Aerial images of the Earth (satellite, aircraft…)

– Google Earth

Interpolation of images in “Google street view”
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Break
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Eigenvalues and eigenvectors

Definition:

• Given an N £ N matrix A, an N-dimensional 
vector
e  0, and a scalar ¸ that satisfy

A e = ¸ e

e is an eigenvector of A, with eigenvalue ¸
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The spectral theorem

If A is real and symmetric (AT = A) then

• All eigenvalues are real

• We can determine an orthonormal basis of  RN

consisting of eigenvectors of A
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The spectral theorem

An algebraic consequence of this theorem:

• When A is symmetric, we can find an orthogonal 
matrix E such that

A = E D ET

• E holds an ON-basis of eigenvectors in its columns
• D is a diagonal matrix of the corresponding 

eigenvalues
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Eigenvalue decomposition

• The spectral theorem implies that any 
symmetric matrix A can be decomposed into a 
matrix product of orthogonal and diagonal 
matrices

• This is the eigenvalue decomposition (EVD) of 
symmetric matrices
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Eigenvalue decomposition

• Obvious limitations of the eigenvalue 
decomposition
– Cannot cope with non-square matrices
– Even some square matrices cannot be 

decomposed

• These shortcomings can be overcome using 
the singular value decomposition
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Singular value decomposition

Theorem:
• For any N £ M real valued matrix A,

– we can find an  N £ N orthogonal matrix U
– we can find an M £ M orthogonal matrix V
– we can find an N £ M real diagonal matrix S
– such that
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A =  U S VT This is the singular 
value decomposition 
(SVD) of A

Singular value decomposition

Example: A is 3 £ 4
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A =

0

@
j j j
u1 u2 u3
j j j

1

A

0

@
¾1 0 0 0
0 ¾2 0 0
0 0 ¾3 0

1

A

0

BBBBB@

¡ vT1 ¡

¡ vT2 ¡

¡ vT3 ¡

¡ vT4 ¡

1

CCCCCA

Matrix U
3 £ 3
U 2 O(3)

Matrix VT

4 £ 4
V 2 O(4)

Matrix S
3 £ 4

Singular value decomposition

• S is N £ M diagonal (non-zero values only in 
the diagonal)

• The diagonal elements of S , ¾1, ..., ¾P, are real
and non-negative (with P = min(N, M))

• They are the singular values of A
• The singular values are usually ordered such 

that ¾1 ¸ ¾2 ¸ ... ¸ ¾P
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Singular value decomposition

• For singular value ¾k, the corresponding 
columns uk and vk of U and V are the
left and right singular vectors of A, 
respectively

• Notice that
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A vk = ¾k uk
ATuk = ¾k vk

Singular value decomposition

• In the case of a non-square matrix A there will 
be some left (or right) singular vectors that 
neither have a corresponding singular value ¾k
nor a right (or a left) singular vector

• In this case they are simply said to have 
singular value 0 since, for example

A vk = 0 (k > P, and N < M)
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SVD and EVD

• Let A be N £ M,
• Let ¾k be a singular value of A, with left and 

right singular vectors uk and vk

• Then

ATA vk = ¾
k

2 vk

A AT uk = ¾
k

2 uk

2017-12-07 Klas Nordberg, LiU 33

vk is an eigenvector of ATA, 
with eigenvalue ¾

k
2

uk is an eigenvector of AAT, 
with eigenvalue ¾

k
2

Computation of SVD

• This result suggests that the SVD of A can be 
computed by an EVD of ATA and A AT

• This is in principle correct, but numerically not a 
good approach in general

• These matrix products, in particular when N or M
are large, or A is close to singular, can introduce 
numerical errors that produce larges errors in the 
resulting U, S, and V

• Instead the SVD can be computed using special 
numerical algorithms, not discussed here
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SVD and Matlab

• Matlab can compute the singular value 
decomposition of matrix A:

[U S V]=svd(A)

produces orthogonal matrices U and V of 
singular vectors and a diagonal matrix S of 
singular values

2017-12-07 Klas Nordberg, LiU 35

Why SVD?

• SVD can be applied to any matrix,
– this is not the case for EVD

• Some common applications:
– The null space of A is spanned by the right singular 

vectors of singular value 0
– The range of A is spanned by the left singular vectors 

of singular values > 0
– The rank of A is the number of non-zero singular 

values
– (why?)
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The orthogonal Procrustes problem

• The problem of determining R 2 SO(3) that 
minimises

with known {r’k, rk, k = 1, ..., N} is sometimes 
called the orthogonal Procrustes problem 
(OPP)

• Correspondences between {r’k, rk} is known!

7 December, 2017 Klas Nordberg, LiU 37

²OPP =
NX

k=1

kr0
k ¡R rkk2

The orthogonal Procrustes problem

• Let A be a matrix of all vectors r’k in its columns
• Let B be a matrix of all vectors rk in its columns

• The OPP then implies to minimise

²OPP = k A – R B k2

with R 2 O(3)
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This is the Frobenius 
norm for matrices

The set of all 3 £ 3 
matrices R such that 
RTR = I 

• We want to determine R 2 O(3) that 
minimises

• Solution
1. Form matrices A and B from rk and r’k
2. Compute SVD: B AT = U S VT

3. R = V UT

Solving OPP

NX

k=1

kr0
k ¡R rkk2
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This algorithm can 
be modified to 
assure that det R = 1


