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TSBB21, Lecture 7
Camera calibration 2
 Camera calibration 2

 Zhang’s method for 3D camera calibration
 Radial distortion
 OpenCV:s extended version of Zhang’s method
 Perspective-n-Point (PnP) pose computation

 Literature
 ”A flexible new technique for camera calibration” by Zhengyou

Zhang, Microsoft Research. Available as short article or long report. 
 ”Short about camera geometry and camera calibration”

by Maria Magnusson
 Literaturel, deepening

 Parts of …
”Introduction to Representations and Estimation in Geometry”
(IREG) by Klas Nordberg

 Parts of …
”Mathematical Toolbox for Studies in Visual Computation at 
Linköping University” by Klas Nordberg

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linköping University
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Camera calibration, general
 Photogrammetry

 A 3D calibration object is manufactured with good 
precision.
Disadvantage: expensive and complicated.

 A 2D calibration object is manufactured with good 
precision. It can be a plane with squares. It is shown for 
the camera in different orientations. Zhang’s approach. 
Advantage: cheap and simple. Lab task!

 Self-calibration
 The camera is moving in a static scene.

Advantage: Flexible.
Disadvantage: The results are not always reliable.

See also Zhang, section 1: Motivations
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3D Camera calibration 
according to Zhang

 1) Print a pattern and attach it to a planar surface.
 2) Take a few images of the model plane under different orientations 

by moving the plane. Fig. 1.
 3) Detect feature points in the images and relate them to points in the 

world.
 4) Determine n C-matrices by calibrating n homographies. Determine A

and [Rt] from the n C-matrices.
 5) Estimate the coefficients of the lens radial distortion from the linear 

least square solution of an equation system. 
 6) Refine all parameters, including the lens radial distortion parameters 

in a non-linear minimization algorithm. 
 5) and 6) are not included in the lab “Camera Calibration 1”, but in the 

lab “Camera Calibration 2”.

A, R, and t in C=A[Rt] can be determined individually

Calibration procedure, see Zhang: Section 3.3
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1,2) Hold the pattern in some differ-
ent orientations and take images

Similar to
Fig. 1
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3) Detect interesting points in the images 
and relate them to points in the world

௜ ௜ ௜ ௜

௝ ௝ ௝ ௝

From n calibration planes we can determine
n C-matrices by calibrating n homographies
using the technique described in the previous lecture.
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4) Determine A and [Rt]
from the n C-matrices

் ்
ଵ ଶ ଷ

்

Eq. (18) 
(Magnusson)
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்
ଵ ଶ ଷ

்

ଵ ଶ
் ்

For simplicity, assume that the planar pattern is at Z=0.

Note that:
r1, r2 and r3 are
are orthonormal!
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4) Determine A and [Rt]
from the n C-matrices

C can only be determined up to a scale factor. 
Zhang set C33 = 1 and introduces l as scale factor.

ଵ ଶ ଵ ଶ ଷ

ଵଵ ଵଶ ଵ

ଶଵ ଶଶ ଶ

ଷଵ ଷଶ ଷ

ଵଵ ଵଶ ଵଷ

ଶଵ ଶଶ ଶଷ

ଷଵ ଷଶ

Before Eq. (3)
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Eq. (3)

Eq. (4)

ଵ
் ି் ିଵ

ଶ

ଵ
் ି் ିଵ

ଵ ଶ
் ି் ିଵ

ଶ

Two important constraints:Note that
r1, r2, t

are gone!

Proof on next slide!
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Proof of the constraints
(3) and (4)
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4) Determine A and [Rt]
from the n C-matrices, cont.

ି் ିଵ
ଵଵ ଵଶ ଵଷ

ଵଶ ଶଶ ଶଷ

ଵଷ ଶଷ ଷଷ

ଶ ଶ

଴ ଴

ଶ

ଶ

ଶ

ଶ ଶ ଶ

଴ ଴

ଶ ଶ

଴

ଶ

଴ ଴

ଶ

଴ ଴

ଶ ଶ

଴

ଶ

଴ ଴
ଶ

ଶ ଶ
଴
ଶ

ଶ

Eq. (5) Eq. (6)

Note 
that 
the B-
matrix 
is sym-
metric 
and that
we can
solve 
a.b,…
from it.

Form a B-matrix and a b-vector:

ଵଵ ଵଶ ଶଶ ଵଷ ଶଷ ଷଷ
்
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4) Determine A and [Rt]
from the n C-matrices, cont.

Eq. (7)

ଵ ଶ ଷ

ଵଵ ଶଵ ଷଵ

ଵଶ ଶଶ ଷଶ

ଵଷ ଶଷ ଷଷ

௜
்

௝ ௜௝
்

௜௝

௜ଵ ௝ଵ

௜ଵ ௝ଶ ௜ଶ ௝ଵ

௜ଶ ௝ଶ

௜ଷ ௝ଵ ௜ଵ ௝ଷ

௜ଷ ௝ଶ ௜ଶ ௝ଷ

௜ଷ ௝ଷ

ଵଶ
்

ଵଵ ଶଶ
் Eq. (8)

This is valid:
Set:

This can be checked 
by inserting elements
to the left and the 
right side.

Note Zhang’s
different row/column

notation

Check on 
next slide!
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4) Determine A and [Rt]
from the n C-matrices, cont.

ଵଶ
்

ଵଵ ଶଶ
் Eq. (8)Check of: 
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4) Determine A and [Rt]
from the n C-matrices, cont.

This is a homogenous equation system, which can be solved 
by using SVD-technique, see next lecture, 
“Short about camera geometry…” from previous lecture or 
“Mathematical Toolbox …”

Eq. (9)

ଵଶ
்

ଵଵ ଶଶ
்

Eq. (8)

2nx6-matrix:

Pile n Eq. (8) on
top of eachother

2x6-matrix:
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Remember: 
We have 
n C-matrices 
obtained from 
n calibration 
planes.
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4) Determine A and [Rt]
from the n C-matrices, cont.

p. 13

ି் ିଵ

When b is known, B is simply obtained.
The matrix B-matrix is estimated up to a scale factor:

଴ ଵଶ ଵଷ ଵଵ ଶଷ ଵଵ ଶଶ ଵଶ
ଶ

ଷଷ ଵଷ
ଶ

଴ ଵଶ ଵଷ ଵଵ ଶଷ ଵଵ

ଵଵ

ଵଵ ଵଵ ଶଶ ଵଶ
ଶ

ଵଶ
ଶ

଴ ଴ ଵଷ
ଶ

The parameters a, b, g, u0, v0 can be extracted from B:

Below Eq. (9)

A is now 
determined!
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4) Determine A and [Rt]
from the n C-matrices, cont.

p. 14

Note: It is slightly better to solve A from B
by using Cholesky decomposition (see Mathematical Toolbox).
Then the parameters a, b, g, u0, v0 can be directly obtained 
from A and they will probably be more accurate.
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How many calibration
planes are needed?

 One calibration plane gives one calibration matrix C.
 One calibration matrix C gives one Eq.(8) with 2 

equations.
 There are 5 unknowns in A.
 If the skew g=0, there are 4 unknowns in A.
 How many calibration planes, at least, are needed to 

determine A?
3 planes are needed.

2 planes are needed if g=0.

 C=A[Rt] is determined up to 8 parameters by 1 
calibration plane. There are 6 degrees of freedom in
[Rt], 3 rotation angles and 3 translation directions. 
Consequently 8-6=2 equations are obtained for 
solving A from one calibration plane.
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4) Determine A and [Rt]
from the n C-matrices, cont.

When A is known, [Rt] is simply obtained as:

ଵ
ିଵ

ଵ

ଶ
ିଵ

ଶ

ଷ ଵ ଶ
ିଵ

ଷ

ିଵ
ଵ

ିଵ
ଶ

See before Eq. (3)

Observe
that Zhang 

now changes 
l to l-1

ଵ ଶ ଵ ଶ ଷ

This is written a bit below Eq. (9)
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5) Radial distortion
 Radial distortion is the most common

 Other types of distortion: the human eye of an 
astigmatic person, fisheye-lenses, telescope

Undis-
torted 
image:

Barrel 
distor-
tion:

Pincush-
ion dis-
tortion:

Radial distorsion can be included in the calibration procedure.

p. 17
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5) Radial distortion example: Extreme 
wide-angle lens gives barrel distortion

 Example from Aftonbladet: Image inside the 
“frimurar” room. (Anders Björck, Hasse Aro and 
the Swedish king are members.)

p. 18
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5) Radial distortion, equations

் ௜ ௜
்

௡ ௡
் ்

଴

଴

(u,v) are the real image coordinates, as before.
Let us call the normalized image coordinates (x,y) instead of (un,vn): 

଴

଴଴ ଴
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5) Radial distortion, equations

Model:
ଵ

ଶ
ଶ

ସ

ଵ
ଶ

ଶ
ସ

ଶ ଶ ଶ

଴ ଵ
ଶ

ଶ
ସ

଴ ଵ
ଶ

ଶ
ସ

k1 and k2 are the
coefficients of radial distortion

The center of the 
radial distortion is 
the same as the 
principal point.

Proof: See next slide.

p. 20

Eq. (11)

Eq. (12)
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5) Radial distortion, equations

଴ ଵ
ଶ

ଶ
ସ
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ଶ

ଶ
ସ

ቊ
𝑢෬ = 𝛼𝑥෬ + 𝛾𝑦෬ + 𝑢଴
𝑣෬ = 𝛽𝑦෬ + 𝑣଴
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ቊ
𝑢 = 𝛼𝑥 + 𝛾𝑦 + 𝑢଴
𝑣 = 𝛽𝑦 + 𝑣଴
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5) Radial distortion, equations

଴ ଵ
ଶ ଶ

ଶ
ଶ ଶ ଶ

଴ ଵ
ଶ ଶ

ଶ
ଶ ଶ ଶ
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Eq. (11)

Eq. (12)

଴
ଶ ଶ

଴
ଶ ଶ ଶ

଴
ଶ ଶ

଴
ଶ ଶ ଶ

ଵ

ଶ

Given m points in n images, we can stack all equations together 
to obtain in total 2mn equations, or in matrix form as 
Dk=d, where k =[k1,k2]T.
The linear least-square solution is given by:

் ି𝟏 ் Eq. (13)
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Correction for radial distortion
(in the report by Zhang)

p. 23
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6) Refine the parameter estimation in 
a non-linear minimization algorithm

் ் Eq. (18)

Eq. (1)

Point in 
the world

Point in 
the image

Magnusson’s notation:

Zhang’s notation:

௜௝ ଵ ଶ ௜ ௜ ௝
ଶ

௠

௝ୀଵ

௡

௜ୀଵ

Projection of point Mj in image i

Can 
be solved by 

the Levenberg-
Marquardt 
algorithm, 
lsqnonlin
in Matlab

Eq. (14)
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Degenerated configurations
 If the calibration plane at the second 

position is parallel with the first position, 
the 2:nd homography will not give any 
extra constraints

p. 25



26

OpenCV:s extended version of 
Zhang’s method
 Contains a more advanced model for radial 

distortion:

 k1 and k2 are Zhang’s original coefficients for 
radial distortion

 p1 and p2 are tangential distortion
 For barrel distortion, typically k1 > 0
 For pincushion distortion, typically k1 < 0

p. 26
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Tangential distortion
 Tangential distortion occurs when the lens and the 

image plane are not parallel. The tangential 
distortion coefficients p1 and p2 model this type of 
distortion.

p. 27

Figure from 
MathWorks

Doc. of 
R2019b
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Tangential distortion

 A simple example:

p. 28



29

Alternative model for radial 
distortion: The arctan model

Let the image be described in polar coordinates: (r, θ). 
Then

Used in Lab exercise E: Panorama stitching

γ is small, e.g. γ=0.001

p. 29
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Perspective-n-Point (PnP) 
pose computation
 The pose computation problem consists in solving 

for the rotation and translation that minimizes 
the reprojection error from 3D-2D point 
correspondences.

 We used OpenCV:s solvePnP in the Camera 
calibration lab 2.

p. 30
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Perspective-n-Point (PnP) 
pose computation

p. 31

chessboard 
corners in 
the image

Model points 
with tile size

 OpenCV:s solvePnP and related functions estimate the 
object pose (R, t) given a set of object points (For us: 
model points with tile size), their corresponding image 
projections (For us: chessboard corners detected in the 
image), as well as the camera intrinsic matrix (A) and the 
radial distortion coefficients (d).

A, d R, t
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Perspective-n-Point (PnP) 
pose computation

 We can solve C, given the model points with tile size and 
the corresponding chessboard corners in the image. This is 
similar to the calibration of a flat world that we did with the 
potato stick in Camera Calibration lab 1.

 We can then solve R and t from C and A.

p. 32

Model points 
with tile size

chessboard 
corners in 
the image

A
C

R,t



33

Perspective-n-Point (PnP) 
pose computation
 The equation on the previous slide was simplified. The 

radial distortion d should be included also. However, 
OpenCV:s solvePnP can deal with this.

 Changing the size of the chessboard tiles will change the 
output translation vector t. However, this will not affect the 
projection of the model. The reprojection errors will not be 
affected. Also, R will be correct.
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