Extra

TSBB09 Computer Exercise A
The Digital Camera

Developed by Per-Erik Forssén and Maria Magnusson 2008.

Computer Vision Laboratory, Linkoping University, Sweden

Updated by: Maria Magnusson, Klas Nordberg and Marcus Wallenberg.
Last update: November 2021

Contents

1 Preliminaries 1
1.1 Displaying images in MATLAB 2

2 Tasks 3
2.1 Shading correction oL oL 3
2.2 Bayer pattern interpolationo 000 6
2.3 Noise measurements o ot i e e 9
2.4 Deinterlacing L o 12

3 Appendix: Shading correction 14

1 Preliminaries

Before attending the computer exercise it is necessary to read through the
course material [1] as well as this guide to the exercise. The guide contains
a few home exercises to be answered before the session. They are all clearly
marked with a pointing finger.

Implementation exercises marked with an “Extra” box may be temporarily
skipped and completed when the other exercises are finished.

Examples of MATLAB commands frequently used are imread, imshow, size,
zeros, and reshape. If you are unfamiliar with any of these commands, you
should use the MATLAB help function to find out how what they do.

1.1 Displaying images in MATLAB

There are two commands for displaying images in MATLAB, imagesc and
imshow. The second one automatically scales the image so that the pixels
become rectangular, removes the axes and sets the colortable to grayscale.
Consequently

imagesc (Im); or imshow(Im, []);
axis image;

axis off;

colormap gray;

give the same result. In the commands above, Im contains the image and []
automatically finds the minimum and maximum of the image and displays
it with a linear scale in between. Note that [] is not needed in imagesc.
There exists also other colortables, i.e. jet, or it is possible to design your
own colortable.

If another range of pixel values is desired, you can write

imagesc(Im, [min max]); or imshow(Im, [min max]);

giving that the image is displayed with a linear scale between the values
min and max.
The command

colorbar;

is useful in connection with displaying images. It shows how the colors
in the image correspond to pixel values.
The command

imshow (Im);

display the image with a linear scale between 0 and 1. Consequently, there
is no automatical scaling due to pixel values. When true color images (with
three colorplanes R ,G, and B) are going to be displayed, the pixel values
should be scaled to the interval between 0 and 1.

One exception to what have been said above is 8-bit images of class uint8.
For such images just

imshow (Im);

works fine.

2 Tasks

Today digital cameras are ubiquitous. Almost all consumer still image cam-
eras use digital sensors, and digital cameras can also be found in most mobile
phones and laptops. In this assignment we will look at the output from a
sensor that uses a Bayer pattern colour filter array (CFA) to capture colour
images. This is the most common CFA in use today, and it can be found
in both still-image cameras and camcorders. We will also have a look at
interlaced images, which are common on analogue video camcorders. These
images have been digitized with a framegrabber.

The different tasks of this exercise are relatively independent of each other
and, therefore, they can be solved in arbitrary order. Some useful files are
located in a common directory. Start by adding a path to these directories
in the MATLAB window:

addpath /courses/TSBB09/DigitalCamera/
addpath /courses/TSBB09/DigitalCamera/shadingcorr
addpath /courses/TSBB09/DigitalCamera/bayer

2.1 Shading correction

Shading correction is described in the appendix. Our goal in this assignment
is to correct for uneven illumination. Note that uneven illumination is only
one example what can be cured by shading correction. Shading correction
can also be applied to correct errors inside the camera caused by the sensor
elements and the optics. A main application in consumer cameras is to
correct for vignetting. This procedure is rather called vignetting correction
instead of shading correction.

Home exercise Assume that you have two reference images, one dark
and one bright, given by ba(x,y) and bp(z,y), respectively. Also assume
that you have an original image b(z,y) taken with the camera. A corrected
image will be computed as f(z,y) = c(z,y) (b(x,y) + d(z,y)). The values in
ba(z,y) should be corrected to fa(z,y) and the values in bg(z,y) should be
corrected to fB(a:,y). Note that fA(:U,y) and fB(x,y) are constant values
independent of (z,y).

QUESTION 1: Express ¢ and d as functions of b4, bp, fA and fB.

Next we will perform shading correction in practice. The following procedure
was performed in advance:

A black cloth was selected as background. Uneven illumination was
introduced by tilting the lamp. The introduced uneven illumination
was not changed during the rest of the experiment. A network camera
was arranged to “look at” the scene.

e Then, the background was covered with a white cloth to serve as the
bright reference image. The bright reference image bp(z,y) was taken
and named whiteimage.

e Then, the white cloth was removed so that the black cloth became
visible again. The first dark reference image bp(x,y) was taken and
named darkimage. This dark reference image is dark gray rather than
black, because the scene was highly illuminated by the lamp.

e Then, the lens was blocked and a second dark reference image bp(z,y)
was taken and named blackimage. This image is almost black.

e Then, the blocking of the lens was removed and a scene with different
objects was arranged on the black cloth background. The original
image b(x,y) was taken and named origimage.

Copy the MATLAB program shadcorr.m to your home directory and execute
it. The four images mentioned above should show up. We now have three
reference images. The second dark reference image produced by blocking of
the lens is the most common type of dark reference image.

QUESTION 2: In our case, however, it may be a little better to instead
use the dark gray image as the dark reference image — why? Use the figure
below to answer the question.

The shading corrected image should not have intensity values that deviate
too much from the original image. Therefore, the reference levels should be
chosen wisely. The value fB can, for example, be selected to the average of
the bright image and the value f A can be selected to the average of the dark
reference image: mean(mean(darkimage))

QUESTION 3: Which values do you select for f 4 and fB?

b(x.y)

N\
‘ % = f(xy), f(xy)
black dark bright

gray

Write MATLAB code for shading correction and be prepared to show it later
to the teacher. It can be helpful to use the jet colormap during development
to see better, i.e. colormap(jet).

QUESTION 4: Did you succeed in correcting for the uneven illumination?

QUESTION 5: What is the result if you try the black image as a dark
reference image? Which values do you select for f4 and fg?

QUESTION 6: Check if your corrected image is noisier than the original
image! Try to explain why!

QUESTION 7: In practice, the bright and dark reference images are often
obtained by averaging a number of bright and dark images, respectively.
What could be the reason for this?

2.2 Bayer pattern interpolation

Home exercise An excision of a Bayer image shown below. A part of the
a corresponding Bayer pattern is indicated. Your task is to derive Rimage,
the resulting red (R) color plane for the image excision.

0] 0 0] 0] O
0] 0 1] 0 O
0] 11 2y 11 0
11 21 3] 2| 1
2031 3] 3] 2] o
Bayer image Bayer pattern Rimage ?
QUESTION 8:

Fill in the correct pixel values in the figure below. Proceed as follows:

e Rmask is an image with ones at the R positions of the Bayer pattern.

e Rmaskimage is Rmask multiplied with the Bayer image.

e Convolution is performed with the averaging filter w shown below (center
is marked in boldface). For simplicity, assume that Rmask is repetitive and
that pixels outside Rmaskimage are zero.

e The two convolved images are divided with eachother. This operation (2
convolutions with w and one division) is denoted normalized averaging.

1 11211
w=g2|x31][2]1]=72]4
1 1121
. ——N
Rmaskimage Rmaskimage*w @9
. 7
Rimage
74

Rmask Rmask*w

Start MATLAB and add paths as described in the beginning of the Task
section. Load one of the images from the folder bayer/ into the variable im.
Also make sure you convert the image to double format using the function
im2double. (This function also scale the image to the interval between 0
and 1.)

The images in the folder bayer/ are raw sensor images from a camera with
a Bayer colour filter array. This means that each pixel receives light trans-
mitted through an optical filter placed over the photo detector. The images
are all captured under constant illumination, and there is no motion in the
scene. This is important as we will later use them for estimation of the noise
characteristics for the used camera.

Bayer patterns come in four basic flavours, shown in table 1. Display the
image using imshow, and use the zoom tool to examine details of the image.

RGGB BGGR GRBG GBRG

Table 1: Bayer patterns

Home exercise We will now create masks for the three different colours.
Start by creating three masks for the GBRG colour array: commands:

maskl=zeros(rows,cols);
mask1(2:2:end,1:2:end)=1;
mask2=zeros (rows,cols);
mask2(. ..

mask2(. ..
mask3=zeros(rows,cols);
mask3(. ..

QUESTION 9: What were the missing indexing commands:

Using these masks, we can colour the pixels in our input image im according
to:
im_rgb=reshape([im.*maskl im.*mask2 im.*mask3], [size(im) 3]);

Try the four different colour arrays, and look at the result using imshow.

QUESTION 10: Which of the four colour filter arrays in table 1 is the
correct one? (Hint: The dust bin on the lower left is blue)

The colour image we generated above was incorrect in the sense that in each
pixel, only one of R,G, or B had a non-zero value. To obtain values for the
missing colour bands in each pixel, we will now employ a technique known
as normalized averaging, or non-linear mean filtering. First we define an
interpolation kernel:

f=[1 2 11/4;

We will apply this filter both horizontally and vertically to the red pixels,
using the conv2 command:

img=conv2(f,f,im.*maskl, ’same’);

QUESTION 11: Compare the means of img and im. Why are they differ-
ent?

Now instead normalise the result with the filtered mask:

img=conv2(f,f,im.*maskl, ’same’)./conv2(f,f,maskl,’same’);

QUESTION 12: Again compare the means. Are they more similar now?
Briefly explain how normalized averaging works.

Now apply the same filtering on the green and blue channels, and fuse the
result using reshape. Look at the result using imshow. Zoom in on the
details, and try to find artifacts.

QUESTION 13: What artifacts can you find?

Extra

The interpolation scheme we have just implemented is the most basic one,
and is used in many still-image cameras. To avoid the artifacts, profes-
sional photographers save images in RAW (i.e. Bayer) format, and use
e.g. Adobe Photoshop or iPhoto to obtain colour images.

WRITE MATLAB CODE: Write a function raw2rgb.m that takes as input
a raw array in uint8 format, and converts it to an RGB image using the
interpolation scheme you just used.

function rgb=raw2rgb(raw)

Note that this function will be used in the next section!
The raw image bayer_image.png can also be converted into a rgb-image.

QUESTION 14: Which colour filter array is the correct one for this image?

2.3 Noise measurements

Now, read all the images in the noise measurement dataset to memory:

fpath="bayer/’;

im=cell(100,1);
for k=1:100,
fname=sprintf (’raw}04d.png’ ,k);
im{k}=imread ([fpath fname]);
end

Use your new MATLAB function raw2rgb to verify that one image,
e.g. No. 100, looks okay. Then show (a section of) all images in a time
sequence to verify that they indeed contain different instances of noise:

figure(1)

imshow (raw2rgb (im{100}));
figure(2)

for k=1:100,

tmp = raw2rgb(im{k});

tmp = tmp(401:480, 871:980, :);
imagesc (tmp) ;

drawnow;

end

Next compute the average image of the raw images in the dataset, using a
for loop over im{k}. Call the average image imm. Make sure you convert the
images to double before averaging by using im2double. (This function also
scales the image to the interval between 0 and 1.) Use raw2rgb to convert
your raw average image to an rgb average image: immrgb = raw2rgb(imm) ;

Now look at the average image and one of the individual images side by side,
using subplot. Zoom in on the details.

QUESTION 15: Can you notice noise reduction in the average image?

We also need a variance image for the dataset. This is an image with
pixel values corresponding to the variance of the pixel across the sequence.
This can be obtained by averaging im{k}.A2 across the sequence, and
then subtracting imm.*imm. Call your variance image imv. Use raw2rgb
to convert your raw variance image to an rgb variance image: imvrgb =
raw2rgb (imv) ;

QUESTION 16: Look at your variance image with imshow. You will need
to scale the image since (r,g,b)-valus above (1,1,1) are shown white and
(r,g,b)-valus below (0,0,0) are show black. Scale the image so that the floor
looks pink and blue. Which scale factor did you use?

QUESTION 17: Where does the noise have the highest absolute variance?

The ratio between the signal power S and the noise power N is an important
quality measure of the image. It comes in different variants, like SNRpp =
10logo(S/N) and SNR = S/N.

QUESTION 18: N is proportional to the noise variance, but how can you
compute S? Compute an image showing S/(N + eps). Scale the image
so that it looks approximately as the original image, but more yellowish.
Which scale factor did you use?

10

QUESTION 19: Where is SNR largest, in bright areas or in dark areas of
the image?

Finally, we are going to collect and merge measurements from the same
intensity, and plot noise variance curves as a function of intensity for each
colour. Type in the following script, and run it.

indim=uint8 (imm#*255) ;
rhist=zeros(256,1);
ghist=zeros(256,1);
bhist=zeros(256,1);

for k=0:255,
k
redk=find (maskl) ;
indk=redk (find (indim(redk)==k)) ;
rhist (k+1)=sum(imv(indk))/(length(indk)+eps);

greenk=find (mask2) ;
indk=greenk (find (indim(greenk)==k)) ;
ghist (k+1)=sum(imv(indk))/(length(indk)+eps) ;

bluek=find (mask3) ;

indk=bluek(find (indim(bluek)==k)) ;

bhist (k+1)=sum(imv(indk))/(length(indk)+eps) ;
end

Now, plot all three curves in one graph:

plot(0:255,rhist*25572,°r’,0:255,ghist*25572, g’ ,0:255,bhist*25572,°b’) ;
axis([0 255 0 10])
grid on

QUESTION 20: The noise we get when measuring light photons has ap-
proximately a Poisson distribution. It can be shown that such noise variance
depends linearly on the image intensity. What about your curves?

11

QUESTION 21: Remember that your S/N image looked yellowish com-
pared to the original image. Can you explain that by looking at the three
curves?

QUESTION 22: Why do the curves look the way they do near 2557 Could
you see this effect in the variance image also?

QUESTION 23: For blue, there were actually no pixel values at 0, 1 and
2 and for green and red there were no pixel values at 0 and 1. Therefore,
the curves should be extrapolated towards 0 giving a small offset. Which
type of noise in the measurement process may this offset correspond to?

2.4 Deinterlacing

Analogue video comes in two main formats: interlaced and progressive scan.
In progressive scan each image is taken at one point in time, alternatively
the lines are taken sequentially one at the time from top to bottom. For
interlaced scans, however, the odd scan lines come from one point in time,
and the even scan lines come from the next following time point. These two
sets of scan lines are called the fields of the interlaced image. Interlaced mode
allows double the temporal frequency at the same bandwidth as progressive
mode, which is an advantage in the old systems for broadcast television.
The disadvantage is that still images from an interlaced sequence typically
contain even and odd lines from two different time points, making such an
image appear distorted if there is much motion in the image.

When analogue video is digitized, using a framegrabber, the images obtained
also have interlaced scan lines. We will now look at such an image.

Start MATLAB and add paths as described in the beginning of the Task
section. Use imread to load the image interlaced_image.png. Load the
image into the variable im, and make sure you convert it to double format
using the function im2double. (This function also scales the image to the
interval between 0 and 1.) Now look at the image using imshow. Use the
zoom tool to examine details.

QUESTION 24: What is moving, and what is stationary in this image?
What is the direction of the motion?

12

Next, generate two masks, one for each of the two interlaced fields:

[rows,cols,ndim]=size(im) ;
maskl=zeros(rows,cols);
mask1(1:2:end, :)=1;
mask2=zeros(rows,cols);
mask2(2:2:end, :)=1;

We can use these to mask out the individual fields in the image as follows:
imshow(im.*repmat (maskl, [1 1 3]));

imshow(im.*repmat (mask2,[1 1 3]));

QUESTION 25: Can you see two different motion positions in the images?

The two images we just created have every second line set to zero. You
should now fill in the missing values using interpolation. You may use the
convolution command conv2 and the interpolation kernel: £=[1 2 1]°/2;.

QUESTION 26: Why is 2 (and not 4) a good normalization factor here?

Use the following code to create the two images im1 and im2. Two of the
lines are incomplete, and you are expected to add the proper calls to conv2.

iml = zeros(size(im));

im2 = zeros(size(im));

for k=1:3,
bk=im(:,:,k);

im1(:,:,k)= ... insert your command here...

im2(:,:,k)= ... insert your command here...
end

QUESTION 27: What are the missing commands?

QUESTION 28: Look at the result with imshow. Can you see any artifacts
at the top and in the bottom of the image? Why are they there?

13

3 Appendix: Shading correction

The digital sensor image consists of a set (e.g. 512x512) parallel information
channels, one for each pixel. In the radiometric chain: lighting = optical
system = photo-detectors, there are individual differences for each channel.
The differences can for example be due to vignetting or non-linearity in the
photo-detectors. The sum (or rather the product) of all these effects gives
the relationship

b(l’, y) = Sxy[f(xv y)}

where b(z,y) is the preliminary image value in pixel (z,y) and f(z,y) is
the signal value of the "real” image (brightness/reflectivity/transparency)
in the pixel (x,y) and s,y is the slightly nonlinear characteristics of the
camera system in the pixel (z,y).

Szy is called the shading function and the problem/phenomenon is called
shading. Methods to estimate f(z,y) from b(x,y) are called shading cor-
rection. As seen from the above, each pixel has its own function s;,. The
figure below shows two curves s; and so that may be representative for the
shading s, in two different pixels in an image sensor.

: Lo ™
| | - f(x,y), f(x.,y)
A=0.05 T ¢ B=1.0
VANAN
fofL2

In practice we can assume that s, is strictly monotonic and, consequently,
it is in principle possible to determine the inverse function s;yl and calculate
f(x,y)=s,, [b(z,y)]. To simplify matters, we linearize s, (and s,) such
that

~

f(xay) = c(x,y)[b(x, y) + d(xay)] ~ f(l',y) (1)

and the inverse mapping s;yl is then determined once ¢, d are known. Notice
that s;, and therefore also ¢, d depend on (x,y). These parameters, in turn,

14

can be determined as soon as the functions b and f are known for two
different points on the curve s;,. This is done independently for each pixel
located at (z,y). This linearization is the first simplification.

Sometimes a second simplification is used based on the assumption that s.,
varies slowly over the image coordinates x and y (which is true for the optical
variation but more doubtful for the other shading phenomena). Then we
are using the same pair of coefficients (¢,d) for a large number of closely
located pixels. As an example, 64 x 64 coeflicient pairs may be used for a
512 x 512 image, i.e. s is constant within an 8 x 8 pixel region.

Let us now see how a simple calibration can be done in terms of an exam-
ple. For two different constant lighting conditions fa(x,y) and fg(x,y), we
measure the response b(z,y) in the sensor pixels 1 and 2. Suppose that the
shading functions s; and s, look as in the figure. We now decide that the
proper, corrected values for these two f-values are, for example, f 4 =0.05
and fB = 1.0. This gives us a system of equations for each pixel (in the
figure, only b4 and bp for sensor 1 is marked).

0.05 =c[ba +d],
1 ZC[bB—i-d],

which gives
19/20 -2

c= 7/ , d= 7@3 ObA.
bp —ba 19

From the figure we can see that we have (very roughly) approximated the two
shading functions with two straight lines. Now suppose that the same light
intensity f hits the two sensor elements giving the different image values
by and ba. Correction according to equation (1) means that we interpret
this as two values fl and fg, which are highly divergent from the correct
value f because the shading functions are strongly nonlinear. However, we
can tolerate this as long as the difference between fi and fs is small. (In
the figure they actually coincide.) Therefore, the false contrast between b;
and by, also called fized pattern noise, is eliminated in the shading corrected
image. That we succeed so well in this case is because the two functions s;
and so are uniform and equal to each other by means of an additive and a
multiplicative factor. Fortunately, this often seems to be the case in the real
image sensors.

References

[1] Abbas El Gamal and Helmy Eltoukhy. CMOS image sensors. [EEFE
Circuits and Devices Magazine, May /June 2005.

15

