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Computer Exercise. Characterization of infrared imaging 

sensors  

 
Updated by Maria Magnusson 2019-2020                 

 

Preparations 

 

Read The Ultimate Infrared Handbook for R&D Professionals, chapters 1 and 2. 

 

 

Content 

 

Part 1: Basic physics and measurement of infrared radiation. 

 

Part 2: Hands-on experiments with a live IR-camera.  In this part you will use a simple 

handheld IR-camera and do some simple experiments that illustrate some basic properties 

of IR-imaging. 

 

Part 3: Non-uniformity correction of IR-images.  Images from an IR-camera typically 

have a lower quality than a standard camera for the visible range.  This is because it is 

more difficult to implement the necessary measurement process for an IR-sensor, that 

makes each pixel produce a uniform response to an incoming uniform radiation. In this 

part of the exercise, you will find out how to deal with this problem.  

 

 

Part 1 
 

The Ultimate Infrared Handbook for R&D Professionals does not give the explicit 

formula for Plank’s radiation law for blackbodies.  Here it is 

 

𝑀(𝜆, 𝑇) =
2𝜋ℎ𝑐2

𝜆5(𝑒ℎ𝑐 𝜆𝑘𝑇⁄ −1)
        (1) 

 

where M(, T) is the spectral emittance or spectral excitance. If  is given in meters it has 

a physical unit of Joule/second/meter2/meter, or Watt/meter3. T is given in Kelvin (K), 

and 

 

c is the speed of light,  

h is the Planck constant,  

k is the Boltzmann constant. 

 

It can be shown that the integral over Planck’s law for all wavelengths of a blackbody 

gives that the total radiated energy is 

 

𝑊 = 𝜎𝑇4  [𝑊 𝑚2⁄ ],         (1) 
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where σ is the Stefan-Boltzmann’s constant. For a greybody, 

 

𝑊 = 𝜀𝑆𝜎𝑇4  [𝑊 𝑚2⁄ ],        (1) 

 

where S is the emissivity, see also (6). 

 

In the figure below the spectral emittance M(, T) is plotted as a function of  for 

different temperatures T.  Notice that the wavelength is given µ-meters and that the plot 

has a logarithmic scale both on the wavelength and the emittance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For infrared sensors the emittance is measured only within certain well-specified 

wavelength bands 1 and 2, e.g., 3-5 µm and 8-12 µm for the sensors used in part 3 of 

this exercise, by integrating the spectral emittance M() in the corresponding range: 

 

𝑀𝜆1−𝜆2
(𝑇) = ∫ 𝑀𝜆(𝜆, 𝑇) ∂𝜆

𝜆2

𝜆1
        (4) 

 

This means that for a specific camera, for which 1 and 2 are specified and fixed, we can 

compute the integrated emittance that can be detected by the pixel as a function of the 

temperature T of the object. It is not possible to derive an analytic expression, but it can 

be computed numerically by a simple approximation of the above integral as a finite sum.   

 

At your help, there is a Matlab script: 

 

part1script.m, that contains a skeleton for a script that produces all the necessary 

computations for an approximation of the emittance in (4).  
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Q1: Before you come to the exercise: What are the numerical values of c, h, and k, in 

Planck’s radiation law? Give them in SI-units 

 

c =  

h= 

k = 

 

You need to give the values for these constants in the script.  Check that this is done. You 

also need to specify lambda1, lambda2, and n = the number of terms in the approximation 

of (4).   One of the sensors you will look at in part 3 has 1 = 3.5 µm and 2 = 5 µm.  

Finally, you need to specify for which temperatures the integrated emittance is computed 

and plotted.  Start with the range 1 to 1000 K. Choose a suitable n and run part1script to 

compute and plot the integrated emittance as a function of temperature. 

 

Q2: What does the function look like?  Is it linear, or what? 

 

 

 

At some configuration this sensor can detect a maximum in-band irradiance of 40 W/m2, 

and becomes saturated for intensities above that. 

 

Q3: Which temperature does this intensity correspond to? 

 

 

 

The digital output signal  [DN, digital number] increases linearly with the detected 

radiance L [W/m2/sr]. For an ideal blackbody source L=M/.. Disregarding the 

atmospheric influence this is expressed in 

 

𝜇 = 𝐾1 ∫ 𝐿𝜆(𝜆, 𝑇)𝜏𝜆(𝜆) ∂𝜆
𝜆2

𝜆1
+ 𝐾0       (5) 

 

where K1 is the overall system gain and  is the spectral transmission of the optics. 

Besides the source, there are additional signal contributions (due to e.g. internal 

emission) which will add a bias K0. The digital output signal µ can be transformed and 

presented in units of radiance or temperature.  

In some IR-sensors, the intensity measurement at a pixel can be done over a relative large 

wavelength range, but often it is limited by an optical filter in front of the sensor, a filter 

that defines 1 and 2. 

 

Q4: How can you change the upper or lower wavelength limits to increase the 

temperature range of this sensor? 
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The ratio between the emittance from a real source, MS, and the emittance from an ideal 

blackbody source, MBB, at the same temperature is called the spectral emissivity, S 

𝜀𝑆(𝜆) =
𝑀𝑆(𝜆)

𝑀𝐵𝐵(𝜆)
         (6) 

If S is a constant  1 for all wavelengths the source is called a greybody for which 

L=SM/. In the general case S is a function of wavelength. Some approximate values of 

S is shown in the table below (from http://www.eplus-innovation.com/knowledge.asp). 

 

 

 

Part 2 

Hands-on experiments illustrating some basic properties of IR-imaging.  

There are two main classes of infrared detectors: thermal detectors and photon detectors. 

The camera you will use in these experiments is based on an array with thermal detectors.  

Characteristic features for a thermal detector : 

• Based on a temperature change of a response element  

 Slow response, a typical frame rate is up to 50 Hz (video rate)  

• No cooling required 

 Technically simple and cheap (compared with the photon detector) 

http://www.eplus-innovation.com/knowledge.asp
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• Lower sensitivity than the photon detector 

• Ideal thermal detector: If radiation falls on the detector at different wavelengths 

but with constant power, and plot with output signal vs. wavelength is as follows 

 

 

 

 

 

 

Characteristic features for a photon detector:  

• Based on a photon-electron interaction 

 Fast response, a frame rate  10000 Hz is possible 

• Requires cooling below 80 K to give good performance in the infrared region 

 Technically complex and expensive 

• High sensitivity 

• Ideal photon detector: If radiation falls on the detector at different wavelengths 

but with constant power, a plot with output signal vs. wavelength is as follows 

 

 

 

 

 

 

 

Task 1. The default camera setting of the emissivity is 0.95, which is in good agreement 

with the emissivity of human skin ( 0.98). Use the camera to measure the apparent 

temperature of your or friend’s skin. Does the value seem reasonable? Can you think out 

the apparent temperature if the emissivity setting is changed to an erroneous value, e.g. 

0.30? Find out the answer using the camera!  

Task 2. A problem with imaging in the infrared region is that expensive lens materials 

such as germanium must be used, due to that the transmission of ordinary lens materials 

is very poor. Investigate the infrared transmission of the glass plate! Now compare with 

the transmission of the plastic bag. Can you find out why plastic lenses are not used in 

infrared imaging? 

Task 3. The camera is not needed in this task. As you have found out the camera is not 

able to see through e.g. the table. The “see-through” ability is achieved using longer 

wavelengths, 70 µm – 3 mm (i.e. the THz region). However, based on the characteristic 

features for a thermal detector, it should be possible to use the camera to “see-through” 

but the camera needs to be both modified and complemented. Can you figure out what 

modification and complement is required?  Hints: Consider Task 2 and the figure below 

(you can also compare a motorist daytime and nighttime).  

 [DN] 

wavelength [] 

 [DN] 

wavelength [] 
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Part 3 
 

Imaging systems based on staring arrays have high sensitivities and high frame rates 

(compared to the corresponding scanning systems). One disadvantage is that the 

sensitivities of the detector elements in the same sensor (detector signal/incident 

radiance) are different, corresponding to a type of static pixel noise (FPN, fixed pattern 

noise), which will decrease the sensor performance. This applies particularly to detector 

materials used in the infrared spectral range, where FPN is the main noise contribution.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure: Schematic sketch of different responses of some pixels in a detector array resulting in 

fixed pattern noise (for clarity the differences between the responses have been exaggerated in the 

figure). Blue = a normal pixel; red = truly dead pixels, green = bad pixels. 

 

 

Useful Matlab commands  

imagesc:  scales data and displays data as an image 

colormap(gray):  sets the current figure's color map to “gray”; this presentation is 

preferable for most infrared images. 

axis image:  sets the aspect ratio so that width and height of the pixels are equal 

in size. 

A*X= B    X=A\B = inv(A)*B 
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The figure shows the spectral radiance at 

the temperature 25 C. The maximum 
emittance is found between 8-12 µm, which 
is the approximate spectral range for the 
infrared camera you are using in these 
hands-on experiments.   
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Sensor 1: Multispectral sensor (AIM)  

 

All blackbody reference data are loaded into Matlab workspace: load Refdata1, etc.  

A multispectral sensor collects data in several spectral bands at the same time. This 

sensor is based on a cooled MCT-detector1 with the spectral range 1.5-5.2 µm. The 

number of pixels in the focal plane array is 288x384. The sensor is equipped with a 

rotating filter wheel containing four band pass filters (see figure below).  

The full frame rate is 4x25 Hz. Generally the ability to detect an object increases with the 

number of spectral bands and the width of the spectral range covered by the spectral 

bands. However, having several spectral bands and a broad spectral range also makes the 

camera more technically complex – and more expensive.  

 

 
Figure: To the left is shown a multispectral sensor based on an MCT detector with the optics 

mounted, next to the right is shown the uncovered camera with the rotating filter wheel 

containing four band pass filters: Filter 1 (1.55 – 1.75 µm), Filter 2 (2.05 – 2.45 µm ), Filter 3 

(3.45 – 4.15 µm), Filter 4 (4.55 – 5.2 µm). To the right are shown three blackbody references.  

 

 

The data used in the exercise has been collected in the spectral band 4.55-5.2 µm (filter 

4). Refdata1, Refdata2 and Refdata3 are registrations of blackbody references 

(homogeneous surfaces) at three different temperatures. In particular FPN is a 

characteristic feature for the detector material MCT. In addition the detector array was 

severely degraded at the time for the measurement which is reflected by a large number 

of bad pixels. This can be observed as salt and pepper in the image.  

 

Refdata1: registered blackbody reference at 3.5 C during 0.8 s (288x384x20, double) 

Refdata2: registered blackbody reference at 22 C during 0.8 s (288x384x20, double) 

Refdata3: registered blackbody reference at 34 C during 0.8 s (288x384x20, double)  

Scenedata: registration of “Slestadsrondellen” during 0.8 s (288x384x20, double)   

 
1 Mercury Cadmium Telluride 
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A. Plotting the sensor data 
 

A-1. The Matlab script part3_A.m plots an image of a blackbody (e.g. the first image 

in the first blackbody reference data set, Refdata1) and look at the pixel values over the 

array. An ideal sensor would only show the temporal noise, which can be observed as 

random pixel fluctuations over the array. Does the pixel noise seem to be randomly 

distributed over the array? 

 

The integrated radiances for the temperatures 3.5, 22.5, 33.5 C are 0.809, 1.58 and 2.25 

[W/(m2,sr)], respectively.   

 

A-2. Add code to part3_A.m and plot the three image means vs. the three integrated 

radiances for the reference data sets. An image mean is estimated by averaging the pixels 

over the array in the first image in the data set (the difference between using only the first 

image and all 20 images in the calculation is here negligible). The image means should be 

linear to the radiance levels. One can expect that the image mean  0 at a radiance level = 

0  the curve is a line through the origin. Is the curve a line through the origin? If not, 

can you find any explanation?   

(Hint: For an ordinary digital camera the optical power on the detector is close to zero 

when the lens is covered, but what about an infrared camera?) 

 

A-3. Identify the row (Y) and column (X) numbers for one bad pixel (”salt” or “pepper”) 

and one “normal” pixel. Plot the single pixel values against the image means for the three 

levels and compare the results for a bad pixel and a “normal” pixel. Also plot two bad 

pixels where the value is not constant over time and which typically appears as not quite 

white salt and not quite black pepper. Two examples of such bad pixels are (200, 117) 

and (153, 204) respectively.  

 

A-4. Plot also these four pixels over time (there are 20 time points in each data set). The 

Matlab command “squeeze” is convenient here. Compare the temporal noise for these 

four pixels. The temporal noise for a bad pixel which is truly dead (a pixel showing one 

constant value over time) is of course zero, but what about the other pixels?  Is there any 

difference?  

 

Summary of A  

In an ideal sensor all pixels have the same response and the same temporal fluctuation 

(variance). As has been shown a real sensor is not ideal. The non-ideality also concerns 

sensors in the visual region, but here the non-uniformity is small compared to sensors in 

the infrared. Different methods are available to perform non-uniformity corrections 

(NUC). Below a method based on polynomial fitting is presented [1].  

 

B. Reference based NUC   
 

As has been shown under A, the response curve of a single pixel tends to be non-linear. 

An algorithm for polynomial fitting has been proposed by Schultz and Caldwell [2]. For 
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pixel j the difference Yj between the pixel value Yj and the mean value Y of the N 

detectors in the array is fitted by the nth order polynomial of Y according to 

 

Δ𝑌𝑗 = 𝑌𝑗 − ⟨𝑌⟩ ≈ ∑ 𝐶𝑖𝑗
𝑛
𝑖=0 ⟨𝑌⟩𝑖 = Δ𝑌𝑗

𝑐      j=1,2 ... N     (7) 

 

where Δ𝑌𝑗
𝑐is the estimated correction term. The corrected pixel value is denoted 𝑌𝑗

𝑐and is 

obtained as 

 

𝑌𝑗
𝑐 = 𝑌𝑗 − Δ𝑌𝑗

𝑐          (8) 

 

If a second degree polynomial is used, the approximation (7) turns into 

 

Δ𝑌𝑗
𝑐 = 𝐶0𝑗 + 𝐶1𝑗⟨𝑌⟩ + 𝐶2𝑗⟨𝑌⟩2       (9) 

 

To estimate the coefficients Cij, homogeneous radiating surfaces are registered at n+1 

radiation levels (=3 for a 2nd degree polynomial). By eliminating ⟨𝑌⟩ from (9), see 

Appendix A, the corrected value 𝑌𝑗
𝑐 is obtained as 

𝑌𝑗
𝑐 = −

1+𝐶1𝑗

2𝐶2𝑗
± √

(1+𝐶1𝑗)
2

4𝐶2𝑗
2 +

𝑌𝑗−𝐶0𝑗

𝐶2𝑗
       (10) 

 

The figure below shows schematic sketches of nonuniformity corrections with nth order 

polynomials. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure: Upper: uncorrected data; blue = a normal pixel; red = truly dead pixels, green = bad 

pixels. Lower: ideal non-uniformity corrections. Lower left: a 0th order correction; lower middle: 

a 1st order correction; lower right: a 2nd order correction. 

Image mean 

Pixel 

value 
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Ideally, the highest polynomial degree should give the best correction. One reason why 

this may not apply to all pixels is that the fixed pattern noise is not totally fixed but 

changes over time. A schematic example is shown in the figure below: 

 

 

             

 

 

 

 

 

 

Figure: A non-uniform correction using a 2nd degree polynomial; the blue line marks an average 

pixel’s response. The offset and the slope are corrected (right) but due to pixel drift the 2nd order 

correction has made the correction worse. In this case a better result had been obtained by a 1st 

order polynomial.  

 

In B-1, B-2 and B-3 below, a rawdata image is compared with the results after a NUC 

using a 0th-degree (offset), a 1st-degree (linear) and a 2nd degree (square) polynomial 

fitting. By visual inspections, assign values on a (relative) 10 degree-scale in the table 

following B-3, where the raw image is given the value = 1, and a fictive “perfect” image 

(=an image where all pixels seem to have exact the same response) the value = 10.  

 

B-1. Use part3_B.m and plot an uncorrected scene image (raw data image). Note that 

the point for this image is 1 in the table below.  

B-2. Plot a NU corrected scene image. Compare the NUC results using 0th-degree 

(offset), 1st degree and 2nd degree polynomial fitting. Use the Matlab command 

“imcontrast” to adjust the contrast in the images. Are there any differences? Store the 

corrected images by proper names for later use, e.g. for a 0th-degree polynomial fitting: 

OI_c0. Give subjective points for these 3 images in the table below. 

B-3. Repeat B-2 with identification and replacement of the bad pixels using median 

filtering. The difference between uncorrected data pixels and median filtered pixels is 

used for identification of the dead pixels. A pixel is defined as a bad pixel if the 

difference (uncorrected pixels – median filtered pixels)  K, where K is an arbitrary value 

that is varying between datasets and/or sensors. For the distributed dataset a K value = 

1000 gives a good result. The value of the bad pixel is replaced with the corresponding 

pixel value in a median filtered image. Give subjective points for these 3 images in the 

table below.  

You do not need to store the data generated under B-3.  

A pixel’s nonuniform 

response at time point 

t1 

The nonuniform 

pixel’s response at 

time point t2  

The corrected 

pixel’s response 

at time point t2 

using reference 

data from time 

point t1 

Image mean Image mean Image mean 

Pixel 

value 

maria
Överstruket
Rename the corrected images as:
OI_c0=OI_c;
OI_c1=OI_c;
OI_c2=OI_c;
for later use.
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Note: With a larger K value, e.g. K  100000, the amount of ”salt and pepper” in the 

image becomes larger. On the other hand a too low value on the difference will cause a 

number of ”normal” pixels to be identified and defined as bad pixels  – and replaced. To 

identify and replace bad pixels is a compromise between minimization of the amount of 

salt and pepper in the image and retention of as much of the original information as 

possible.   

 

 Point (1-10) 

Image data  Visual inspection 

Raw  1 

NUC 0th   

NUC 1st   

NUC 2nd   

NUC 0th + dp repl  

NUC 1st + dp repl  

NUC 2nd + dp repl  

 

B-4. Median filtering is the method used to identify the bad pixels in B-3. Suggest 

another method to identify bad pixels? Hint: remember example A-4.  

 

 

 

C.   Image quality measures  
 

A NUC will never be perfect and residual fixed pattern noise will therefore be added to 

the temporal noise: 

 

𝜎𝑡𝑜𝑡
2 = 𝜎𝑡𝑒𝑚𝑝

2 + 𝜎𝑠𝑝𝑎𝑡
2          (11) 

In B-1 – B-3 the quality of the NUC methods was evaluated by a visual inspection. 

However, if the amount of data is large, a substantial time may be needed to select the 

most optimal NUC methods by visual inspections. In addition, by a (subjective) visual 

inspection, it is not always obvious which NUC method is the most optimal and therefore 

the results will depend on the individual observer. Root-mean-square error (RMSE), 

UIQI or Q (universal image quality index) and roughness () are four proposed measures 

of the goodness of the NUC to describe the quality of the correction with an objective 

number instead of a (subjective) visual inspection.  

Collect the results you obtain in C-1 – C-3 in the table after C-3. Use part3_C.m. 
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C-1. RMSE 

 

RMSE [4] measures the improvement by a NUC. RMSE is defined as the square root of 

the average (over the entire array and block of frames) of the square of the difference 

between the corrected (the “true”) pixel signal and the non-corrected pixel signal 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(〈𝑦𝑗〉 − 〈𝑥𝑗〉)

2
𝑁

𝑗=1

   ;         [𝑅𝑀𝑆𝐸  0]                                                     (12) 

where xj denotes a pixel in the uncorrected image. With no improvement RMSE = 0. 

 

C-1a. Calculate RMSE in an image from Scenedata, before and after NUC including 

replacement of bad pixels. Cut the upper right corner in the image before the calculation 

( the columns 351-384) which contains the cluster with bad pixels.  

 

 

C-2. UIQI 

 

The universal image quality index UIQI (also denoted Q) [5] measures the improvement 

by an NUC and compares the image before (x) and after (y) a NUC. UIQI is expressed in 

the following equation 

 

𝑈𝐼𝑄𝐼 =
4 𝑥𝑦 〈𝑥〉 〈𝑦〉

(𝑥
2 + 𝑦

2)(〈𝑥〉2 + 〈𝑦〉2)
                ;  [−1  UIQI  1]                                       (13) 

 

where 𝑥̄, 𝑦̄,  𝜎𝑥 and 𝜎𝑦 are the mean and standard deviation of both images. With no 

improvement Q = 1. (13) can be rewritten  

 

𝑈𝐼𝑄𝐼 =
𝑥𝑦

 𝑥 𝑦
 

2 〈𝑥〉 〈𝑦〉

〈𝑥〉2 + 〈𝑦〉2
 

2 𝑥 𝑦

𝑥
2 + 𝑦

2
                                                                          (14) 

 

The first component is the correlation coefficient between x and y. The second 

component measures the relative difference between x and y. The third component 

measures the contrast difference between the images.  

 

C-2a. Calculate Q in an image from Scenedata, before and after NUC including 

replacement of bad pixels. Cut the upper right corner in the image before the calculation 

( the columns 351-384) which contains the cluster with bad pixels.  

 

C-3. Roughness  

The roughness  [6] for an image is defined as 

 

𝜌(𝑓) =
‖ℎ1∗𝑦‖1+‖ℎ2∗𝑦‖1

‖𝑦‖1
                    ; [  0]      (15) 
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where h1 is a horizontal mask [1, -1], h2 = ℎ1
𝑇a vertical mask, ‖𝑦‖1is the L1 norm of the 

image = the sum of the magnitudes of all pixels. For a uniform image  = 0, and 

increases with the pixel-to-pixel variation in the image. 

C-3a. Calculate   in an image from Scenedata, before and after NUC including 

replacement of bad pixels. Cut the upper right corner in the image before the calculation 

( the columns 351-384) which contains the cluster with bad pixels.  

 

 

Image data  RMSE Q  

Raw                          0 1  

NUC 0th                      

NUC 1st     

NUC 2nd     

NUC 0th + dp repl       

NUC 1st + dp repl             

NUC 2nd + dp repl          

 

 

D. Discussion section B and C 
 

In practice a NUC based on a 1st degree polynomial is most common, followed by an 

offset correction. A 2nd degree polynomial fitting is not used as often, why?  

 

What is the basic difference between the three image quality metrics studied in this 

exercise, considering eq. (12), (13) and (15)? 

Which quality measure is in best agreement with your visual inspection in B? 

The quality metrics RMSE and Q compare two images and return values of the change, 

instead of absolute values. Do these metrics tell if a change is positive or negative? If 

scene data and reference data are registered at different time points they may not match 

each other and in this case a reference based NUC will distort the scene data. Can you 

find out a solution to this problem? 

 

 

E. Comparison with a standard camera 

 
In the previous sections you have been looking at image data collected with a quite old 

infrared camera. The quite noisy data made it easier to see differences before and after 

the correction steps. In this section, you will compare with an infrared camera that is 

more representative of a standard infrared camera. Data are found under ‘Multiband’ and 

are loaded into Matlab workspace as before: load Refdata1, etc.  

maria
Överstruket
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E-1. Plot a scene image and make a visual comparison with a scene image from the first 

camera 

 

E-2. Residual non-uniformity (RNU) is a measure used to quantify fixed pattern noise in 

image data from uniform surface radiators. It is defined  

 

𝑅𝑁𝑈 =
𝑠𝑝𝑎𝑡

𝐷𝑅
 100%                        

 

where DR is the dynamic range, which is 214 for both cameras.  

 

Use Refdata2 (both cameras). In a first step the data is averaged over time so that most of 

the temporal noise is eliminated. In a second step the standard deviation gives the spatial 

noise spat. In camera 1 the columns 351-384 contains a cluster with bad pixels in the 

upper right corner which are excluded in the calculation of spat. In camera 2 the first row 

contains a time code in the upper right corner which is excluded in the calculation of 

spat. Using Matlab, spat is calculated as 

 
RefdataTempAve=mean(Refdata2,3); 

Camera 1: sigmaspat = std2(RefdataTempAve(:,1:350)) 

Camera 2: sigmaspat = std2(RefdataTempAve(2:512,:)) 

 

A RNU value below 0.1 % is a very good result. What can you say about the FPN quality 

of the first and the second camera ? 

 

E-3. If time remains and you are interested, you can of course repeat the steps A through 

D also with the second camera. 

 

 

 

 

 

 

References 
 

[1]  Gerald C.Holst, Electro-optical imaging system performance, Fifth edition, JCD 

Publishing Co (2008) 

[2] M.Schultz, L.Caldwell. Nonuniformity correction and correctability of infrared focal 

plane arrays. Infrared physics and technology 36:p.763-777 (1995). 

[3]  S.N. Torres, J.E. Pezoa, M.M. Hayat, Scene-based nonuniformity correction for focal 

plane arrays by the method of the inverse covariance form, Applied Optics, Vol.42, No.29 

(2003)   

[4] Z.Wang, A.C.Bovik, A Universal Image Quality Index, IEEE Signal Processing Letters, 

Vol.9, No.3 (2002)  

[5]  M.M. Hayat, S.N. Torres, E. Armstrong, S.C. Cain, B. Yasuda, Statistical algorithm 

for nonuniformity correction in focal-plane arrays, Applied Optics, Vol.38, No.8 (1999)   



Thomas Svensson, Department of Electro-Optical Systems, FOI 

 15 

Appendix A: Schultz approximation 
 

 

Schultz (polynomial fitting): 

 

Δ𝑌𝑗 = 𝑌𝑗 − ⟨𝑌⟩ ≈ ∑ 𝐶𝑖𝑗
𝑛
𝑖=0 ⟨𝑌⟩𝑖 = Δ𝑌𝑗

𝑐;   

 

Ideally only temporal noise will remain after the correction and 𝑌𝑗
𝑐 ≈ ⟨𝑌⟩ for all pixels j   

 

Offset: 

𝑌𝑗
𝑐 = 𝑌𝑗 − 𝐶0            (A1) 

 

1st degree: 

𝑌𝑗 − 𝑌𝑗
𝑐 = 𝐶0𝑗 + 𝐶1𝑗 ⋅ 𝑌𝑗

𝑐 

𝑌𝑗 − 𝐶0𝑗 = (1 + 𝐶1𝑗) ⋅ 𝑌𝑗
𝑐 

𝑌𝑗
𝑐 =

𝑌𝑗−𝐶0𝑗

1+𝐶1𝑗
          (A2) 

 

2nd degree:        

𝑌𝑗 − 𝑌𝑗
𝑐 = 𝐶0𝑗 + 𝐶1𝑗 ⋅ 𝑌𝑗

𝑐 + 𝐶2𝑗 ⋅ (𝑌𝑗
𝑐)

2
     

𝑌𝑗 − 𝐶0𝑗 = (1 + 𝐶1𝑗) ⋅ 𝑌𝑗
𝑐 + 𝐶2𝑗 ⋅ (𝑌𝑗

𝑐)
2

     

(𝑌𝑗
𝑐)

2
+

(1 + 𝐶1𝑗)

𝐶2𝑗
(𝑌𝑗

𝑐) −
(𝑌𝑗 − 𝐶0𝑗)

𝐶2𝑗
= 0 

𝑌𝑗
𝑐 = −

1+𝐶1𝑗

2𝐶2𝑗
± √(

1+𝐶1𝑗

2𝐶2𝑗
)

2

+
𝑌𝑗−𝐶0𝑗

𝐶2𝑗
= −

1+𝐶1𝑗

2𝐶2𝑗
± √

(1+𝐶1𝑗)
2

4𝐶2𝑗
2 +

𝑌𝑗−𝐶0𝑗

𝐶2𝑗
  (A3) 

 

         




