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Computer Exercise B. Characterization of infrared imaging
Sensors

Preparations

Read The Ultimate Infrared Handbook for R&D Professionals, chapters 1 and 2.
Content

Part 1: Basic physics and measurement of infrared radiation.

Part 2: Hands-on experiments with a live IR-camera. In this part you will use a simple
handheld IR-camera and do some simple experiments that illustrate some basic properties
of IR-imaging.

Part 3: Non-uniformity correction of IR-images. Images from an IR-camera typically
have a lower quality than a standard camera for the visible range. This is because it is
more difficult to implement the necessary measurement process for an IR-sensor, that

makes each pixel produce a uniform response to an incoming uniform radiation. In this
part of the exercise, you will find out how to deal with this problem.

Part 1

The Ultimate Infrared Handbook for R&D Professionals does not give the explicit
formula for Plank’s radiation law for blackbodies. Here it is

27hc?
(ehc/lkT _ 1) (1)

M(LT) =

where M (4, T) is the spectral emittance or spectral excitance. If A is given in meters it
has a physical unit of Joule/second/meter?/meter, or Watt/meter®. T is given in Kelvin
(K), and

c is the speed of light,
h is the Planck constant,
k is the Boltzmann constant.

In the figure below the spectral emittance is plotted as a function of A for different
temperatures T. Notice that the wavelength is given p-meters and that the plot has a
logarithmic scale both on the wavelength and the emittance.
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For infrared sensors the emittance is measured only within certain well-specified
wavelength bands A1 and A2, e.g., 3-5 um and 8-12 um for the sensors used in part 3 of
this exercise, by integrating the spectral emittance Mx()) in the corresponding range:

MMZ(T):fMi(z,T)aA 2
A

This means that for a specific camera, for which A1 and . are specified and fixed, we can
compute the integrated emittance that can be detected by the pixel as a function of the
temperature T of the object. It is not possible to derive an analytic expression, but it can
be computed numerically by a simple approximation of the above integral as a finite sum.
At your help, there is a Matlab script:

partlscript: contains a skeleton for a script that produces all the necessary
computations for an approximation of the emittance in (2). You need to specify some
parameters here.

Before you come to the exercise: What are the numerical values of ¢, h, and k, in
Planck’s radiation law? Give them in SI-units

You need to give the values for these constants in the script. Do this. You also need to
specify lambdal, lambda2, and n = the number of terms in the approximation of (2).

One of the sensors you will look at in part 3 has A1 = 3.5 um and A, =5 um. Finally, you
need to specify for which temperatures the integrated emittance is computed and plotted.
Start with the range 1 to 1000 K. Choose a suitable n and run partlscript to compute and
plot the integrated emittance as a function of temperature.
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Q: What does the function look like? Is it linear, or what?

At some configuration this sensor can detect a maximum in-band irradiance of 40 W/m2,
and becomes saturated for intensities above that.

Q: Which temperature does this intensity correspond to?

The digital output signal p [DN, digital number] increases linearly with the detected
radiance L. For an ideal blackbody source L=M/z.. Disregarding the atmospheric
influence this is expressed in

U= Kl_fLi (A, T)z, (D)oL +K, 3
A

where K is the overall system gain and z: is the spectral transmission of the optics.
Besides the source, there are additional signal contributions (due to e.g. internal
emission) which will add a bias Ko. The digital output signal p can be transformed and
presented in units of radiance or temperature.

In some IR-sensors, the intensity measurement at a pixel can be done over a relative large
wavelength range, but often it is limited by an optical filter in front of the sensor, a filter
that defines A1 and A».

Q: How can you change the upper or lower wavelength limits to increase the temperature
range of this sensor?

The ratio between the emittance from a real source, Ms, and the emittance from an ideal
blackbody source, Mgg, at the same temperature is called the spectral emissivity, &s

e (A) = |\I>|AS ((’;)) 4)

If & is a constant < 1 for all wavelengths the source is called a greybody for which
L=&-M/ 7. In the general case & is a function of wavelength. Some approximate values of
& 1s shown in the table (taken from http://www.eplus-innovation.com/knowledge.asp) on
next page.



http://www.eplus-innovation.com/knowledge.asp
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Emassivity Emassivity
Material Emissivity (€) Material Emissivity (€)
Aluminum alloy-oxided 0.40 Asbestos Board 0.98
Aluminum-highly polished 0:04:0:087m(  popnatal piteh L
Aluminum-oxidized 0.11-0.31 Brick-fireclay 9 0.75
| Aluminum-Anodized sheet 0.55° | Carbon-filament 052
Brass-Oxidized 0.60 ga«bon-lampb!ack 826
| Brass-polished 0.03 | ement .54
Chromium-polished 0.10-0.38 Ceramic 0.90-0.94
| Copper-polished LR o2 08T
Copper-heated at 600 C 0.57 Glass s 0.80-0.95
| Gold-pure, highly polished 0.02 | Humanskin 0.98
lron-polished 0.21 lce 0.98-0.98
[ Iron-oxidized 0.94 | Marble-polished light gray 0.90
rusied ron plate T LT
| Iron-rough steel plate 0.94-0.97 | Paints, lacquers. varnishes flatblack lacquer 0.96-0.98
Lead-gray and oxidized 0.28 Paints, lacquers, varnishes white lacquer 0,95
| Mercury 0.09-0.12 | paper 0.94
Nickel-polished 0.12 Plastic 0.84-0.94
| Nickel-oxidized 0.37-0.85 | gorcell«lain-‘gtéze.g - g-gg
Platinum-pure polished plate 0.05-0.10 fopeilant-Liquid rocket engine :
| Platinum-wire 0.06-0.16 | P¥C. . PR
Silver-pure and polished 0.02-0.03 Rnge;waqu 0.95.0 97
| Stainless steel-polished 0.16 | sand 0.90
Stainless steel-oxidized 0.74-0.87 Snorw 0.96-1.00
| Tin-bright 0.07-0.08 | Soil 0.92-0.95
Tungsten-filament 0.32-0.39 Tape-Masking 0.92-0.95
|  Zinc-polished commercial pure 0.05 | w"‘"pape' 0'82'0'92
Zinc-galvanized sheet 0.23 L SR
Wood-planed oak 0.82-0.89
METALS NONMETALS
Part 2

Hands-on experiments illustrating some basic properties of IR-imaging.

There are two main classes of infrared detectors: thermal detectors and photon detectors.
The camera you will use in these experiments is based on an array with thermal detectors.

Characteristic features for a thermal detector

e Based on a temperature change of a response element
= Slow response, a typical frame rate is up to 50 Hz (video rate)

e No cooling required
= Technically simple and cheap (compared with the photon detector)

e Lower sensitivity than the photon detector

e ldeal thermal detector: If radiation falls on the detector at different wavelengths
but with constant power, and plot with output signal vs. wavelength is as follows

»

n[DN]

»

wavelength [A]
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Characteristic features for a photon detector:

e Based on a photon-electron interaction
= Fast response, a frame rate > 10000 Hz is possible

e Requires cooling below 80 K to give good performance in the infrared region
= Technically complex and expensive

e High sensitivity

e |deal photon detector: If radiation falls on the detector at different wavelengths
but with constant power, a plot with output signal vs. wavelength is as follows

u [DN]

»

wavelehgth [ﬂ

Task 1. The default camera setting of the emissivity is 0.95, which is in good agreement
with the emissivity of human skin (~ 0.98). Use the camera to measure the apparent
temperature of your or friends skin. Does the value seem reasonable? Can you think out
the apparent temperature if the emissivity setting is changed to an erroneous value, e.g.
0.30? Find out the answer using the cameral

Task 2. A problem with imaging in the infrared region is that expensive lens materials
like germanium have to be used, due to that the transmission of ordinary lens materials is
very poor. Investigate the infrared transmission of the glass plate! Now compare with the
transmission of the plastic bag. Can you find out why plastic lenses are not used in
infrared imaging?

Task 3. The figure below shows the spectral radiance at the temperature 25 °C. The
maximum emittance is found between 8-12 pum, which is the approximate spectral range
for the infrared camera you are using in these hands-on experiments. As you have found
out the camera is not able to see through e.g. the table. The “see-through” ability is
achieved using longer wavelengths, 70 um — 3 mm (i.e. the THz region). However, based
on the characteristic features for a thermal detector, it should be possible to use the
camera to “see-through” but at least two modifications of the camera probably need to be
done. Can you find out which two? Hints: Consider Task 2 and the figure below (you
can also compare a motorist daytime and nighttime).
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Figure: Spectral radiance at 25 °C
Part 3

Imaging systems based on staring arrays have high sensitivities and high frame rates
(compared to the corresponding scanning systems). One disadvantage is that the
sensitivities of the detector elements in the same sensor (detector signal/incident
radiance) are different, corresponding to a type of static pixel noise (FPN, fixed pattern
noise), which will decrease the sensor performance. This applies particularly to detector
materials used in the infrared spectral range, where FPN is the main noise contribution.

output
signal

=

[
|

incident radiance

Figure: Schematic sketch of different responses of some pixels in a detector array resulting in
fixed pattern noise (for clarity the differences between the responses have been exaggerated in the
figure).

Useful Matlab commands

imagesc: scales data and displays data as an image

colormap(gray) : sets the current figure's color map to “gray”; this presentation is for
most infrared images preferable to the root's default, whose setting instead is “jet”
imcontrast: adjust contrast tool

axis image: sets the aspect ratio so that width and height of the pixels are equal in size.
A*X=B = X=A\B =inv(A)*B
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Available m-files

There are two m-files available for solving the tasks B-1, B-2, B-3, B-4, C-1, C-2 and C-
3:

part3_B: to solve the tasks B-1, B-2, B-3 and B-4; calls the functions calc_C, NUC and
id_dp.

part3_C: to solve the tasks C-1, C-2 and C-3; calls the function id_dp

Functions:

calc_C: calculates correction coefficients

NUC: performs a non-uniformity correction of a raw image

id_dp: identifies and replaces dead pixels in an image using median filtering

Sensor 1: Multispectral sensor (AIM)
All data are loaded into Matlab workspace: load Refdatal, etc.

A multispectral sensor collects data in several spectral bands at the same time. This
sensor is based on a cooled MCT-detector with the spectral range 1.5-5.2 pum. The
number of pixels in the focal plane array is 288x384. The sensor is equipped with a
rotating filter wheel containing four band pass filters (see figure below).

The full frame rate is 4x25 Hz. Generally the ability to detect an object increases with the
number of spectral bands and the width of the spectral range covered by the spectral
bands. However, having several spectral bands and a broad spectral range also makes the
camera more technically complex — and more expensive.

Figure: Multispectral sensor based on an MCT detector. Left: with the optics mounted; right: the
uncovered camera with the rotating filter wheel containing four band pass filters: Filter 1 (1.55 —
1.75 pum), Filter 2 (2.05 — 2.45 pm ), Filter 3 (3.45 — 4.15 pm), Filter 4 (4.55 — 5.2 um)

The data used in the exercise has been collected in the spectral band 4.55-5.2 um (filter

4). Refdatal, Refdata2 and Refdata3 are registrations of surface radiators (homogeneous
surfaces) at three different temperatures. In particular FPN is a characteristic feature for

the detector material MCT. In addition the detector array was severely degraded at the
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time for the measurement which is reflected by a large number of bad pixels. This can be
observed as salt and pepper in the image.

Refdatal: registered surface radiator at 3.5 °C during 0.8 s (288x384x20, double)
Refdata2: registered surface radiator at 22 °C during 0.8 s (288x384x20, double)
Refdata3: registered surface radiator at 34 °C during 0.8 s (288x384x20, double)
Scenedata: registration of “Slestadsrondellen” during 0.8 s (288x384x20, double)

A. Plotting the sensor data

A-1. Plot an image of an area radiator (e.g. the first image in the first reference data set,
Refdatal) and look at the pixel values over the array. An ideal sensor would only show
the temporal noise, which can be observed as random pixel fluctuations over the array.
Does the pixel noise seem to be randomly distributed over the array?

The integrated radiances for the temperatures 3.5, 22.5, 33.5 °C are 0.809, 1.58 and 2.25
[W/(m?,sr)], respectively.

A-2. Plot the pixel means vs. the integrated radiances for the reference data sets. The
pixel mean is estimated by averaging the pixels over the array in the first image in the
data set (the difference between using only the first image and all 20 images in the
calculation is here negligible). The mean pixel value should be linear to the radiance
level. One can expect that the mean pixel value = 0 at a radiance level = 0 < the curve is
a line through the origin. Is the curve a line through the origin ? If not, can you find any
explanation ?

(Hint: For an ordinary digital camera the optical power on the detector is close to zero
when the lens is covered, but what about an infrared camera ?)

A-3. Identify the row and column numbers for 2-3 bad pixels ("’salt and pepper”) and 2-3
“normal” pixels. Plot the single pixel values against the pixel means for the three levels
and compare the results for bad pixels (”salt and pepper”’) and “normal” pixels.

A-4. Plot also some single pixel values over time (there are 20 time points in each data
set). The temporal noise for a bad pixel which is truly dead (a pixel showing one constant
value) is of course zero. Try to find one or more bad pixels (“salt and pepper”) where the
value is not constant over time. Compare the temporal noise for these bad pixels with
“normal” pixels. Is there any difference?

Summary of A

In an ideal sensor all pixels have the same response and the same temporal fluctuation
(variance). As has been shown a real sensor is not ideal. The non-ideality also concerns
sensors in the visual region, but here the non-uniformity is small compared to sensors in
the infrared. Different methods are available to perform non-uniformity corrections
(NUC). Below a method based on polynomial fitting is presented [1].
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B. Reference based NUC

As has been shown under A, the response curve of a single pixel tends to be non-linear.
An algorithm for polynomial fitting has been proposed by Schultz and Caldwell [2]. For
pixel j the difference AY; between the pixel value Yj and the mean value <Y> of the N
detectors in the array is fitted by the nth order polynomial of <Y> according to

AY; =Y, =(Y)= D Ci(Y)' =AY j=1,2..N ®)
i=0

where AY is the estimated correction term. The corrected pixel value is denoted Y and is
obtained as

Y=Y, —AYS (€)
If a second degree polynomial is used, the approximation (5) turns into
Ach =Cy; +C1j<Y>+CZj(Y>2 @)

To estimate the coefficients Cij, homogeneous radiating surfaces are registered at n+1
radiation levels (=3 for a 2" degree polynomial). By eliminating (Y ) from (7), see

Appendix A, the corrected value Y; is obtained

1+C,. 1+C,.f Y. -C,.
Y_C:_ 1j +\/( 1]) + ] 0j (8)

TS ac?, C,,

2j J

The figure below shows schematic sketches of non-uniformity corrections with nth order
polynomials.

outputy
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Figure: non-uniformity corrections. Upper: uncorrected data; lower left: a 0" order correction;
lower middle: a 1 order correction; lower right: a 2™ order correction
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Ideally, the highest polynomial degree should give the best correction. One reason why
this may not apply to all pixels is that the fixed pattern noise is not totally fixed but
changes over time. A schematic example is shown in the figure below:

A A pixel’s non-uniform 4 The nonuniform 4 The corrected
response at time point pixel’s response at pixel’s response
t1 time point t; at time point t;
using reference
output data from time
signal point ty

v

v
v

incident radiance incident radiance incident radiance

Figure: A non-uniform correction using a 2™ degree polynomial; the blue line marks an average
pixel’s response. The offset and the slope are corrected (right) but due to pixel drift the 2" order
correction has made the correction worse. In this case a better result had been obtained by a 1%
order polynomial.

In B-1, B-2 and B-3 below, a rawdata image is compared with the results after a NUC
using a 0""-degree (offset), a 1%-degree (linear) and a 2" degree (square) polynomial
fitting. By visual inspections, assign values on a (relative) 10 degree-scale in the table
following B-3, where the raw image is given the value = 1, and a fictive “perfect” image
(=an image where all pixels seem to have exact the same response) the value = 10.

B-1. Plot a scene image (raw data image).

B-2. Plot a NU corrected scene image. Compare the NUC results using offset, 1% degree
and 2" degree polynomial fitting. Use the Matlab command “imcontrast” to adjust the
contrast in the images. Are there any differences?

Store the calibration coefficients and image data by proper names for later use in C, e.g.
for a 0"-degree polynomial fitting: CO (= the calibration coefficients) and OI_cO0 (the
corrected image).

B-3. Repeat B-2 with identification and replacement of the dead pixels using median
filtering. The difference between raw data pixels and median filtered pixels is used for
identification of the dead pixels. A pixel is defined as a dead pixel if the difference
rawdata pixel - median filtered pixel > K, where K is an arbitrary value that is varying
between datasets and/or sensors. For the distributed dataset a K value = 1000 gives a
good result. The value of the bad pixel is replaced with the corresponding pixel value in a
median filtered image.

You do not need to store the data generated under B-3.

10
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Point (1-10)
Image data Visual inspection
Raw 1
NUC o™
NUC 1%
NUC 2nd

NUC 0" + dp repl
NUC 1% + dp repl
NUC 2" + dp repl

B-4. For the distributed dataset a difference between rawdata pixels and median filtered
pixels > 1000 gives a good result. Repeat B-3 with the following bad pixel definition:
rawdata pixels — median filtered pixels > 100000. For clarity, use raw data as input data.
The amount of ’salt and pepper” in the image now has become larger. On the other hand
a too low value on the difference will cause a number of “normal” pixels to be identified
and defined as bad pixels —and replaced. To identify and replace bad pixels is a
compromise between minimization of the amount of salt and pepper in the image and
retention of as much of the original information as possible.

B-5. Median filtering is the method used to identify the dead pixels in B-3. Can you find
out other methods to identify dead pixels?

Hint: see e.g. example A-4: Compare the temporal noise between dead pixels and other
pixels. Are there any differences ? In B-2 values of the coefficients were calculated. Are
there any differences between dead pixels and other pixels?

C. Image quality measures

A NUC will never be perfect and residual fixed pattern noise will therefore be added to
the temporal noise:

Jtit = Jtzemp + Jszpat 9)
In B-1 — B-3 the quality of the NUC methods was evaluated by a visual inspection.
However, if the amount of data is large, a substantial time may be needed to select the
most optimal NUC methods by visual inspections. In addition, by a (subjective) visual
inspection, it is not always obvious which NUC method is the most optimal and therefore
the results will depend on the individual observer. Root-mean-square error (RMSE),
UIQI or Q (universal image quality index) and roughness (p) are four proposed measures
of the goodness of the NUC to describe the quality of the correction with an objective
number instead of a (subjective) visual inspection.

Collect the results you obtain in C-1 — C-3 in the table after C-3.

11
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C-1. RMSE

RMSE [4] measures the improvement by a NUC. RMSE is defined as the square root of
the average (over the entire array and block of frames) of the square of the difference
between the corrected (the “true”) pixel signal and the non-corrected pixel signal

RMSE:\/%i(<yj>—<xj>)2 . [RMSE > 0] (10)

j=1

where x; denotes a pixel in the uncorrected image. With no improvement RMSE = 0.
C-1a. Calculate RMSE in an image from Scenedata, before and after NUC including
replacement of bad pixels. Cut the upper right corner in the image before the calculation
(~ the columns 351-384) which contains the cluster with bad pixels.

C-2. UlQl

The universal image quality index UIQI (also denoted Q) [5] measures the improvement

by an NUC and compares the image before (x) and after (y) a NUC. UIQI is expressed in
the following equation

4.0Xy.)_(.y

U|Q|=( . [[1<UIQI<1] (11)

o2 +a? %2 +y?)

where X, ¥, o, and o, are the mean and standard deviation of both images. With no
improvement Q = 1. (18) can be rewritten

o 2%-y 20,0
UIQI = > "2 Yz' 2x y2 (12)
o0, X' +y® ol+0;

The first component is the correlation coefficient between x and y. The second
component measures the relative difference between x and y. The third component
measures the contrast difference between the images.

C-2a. Calculate Q in an image from Scenedata, before and after NUC including
replacement of bad pixels. Cut the upper right corner in the image before the calculation
(~ the columns 351-384) which contains the cluster with bad pixels.

C-3. Roughness p
The roughness p [6] for an image is defined

12
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h vyl +(h, *
;ﬁf);” 1 WM H 2 WM ;[pZO] (1$

where hy is a horizontal mask [1, -1], h2 = h a vertical mask, |y||is the L1 norm of the

image = the sum of the magnitudes of all pixels. For a uniform image p =0, and
increases with the pixel-to-pixel variation in the image.

C-3a. Calculate p in an image from Scenedata, before and after NUC including
replacement of bad pixels. Cut the upper right corner in the image before the calculation
(~ the columns 351-384) which contains the cluster with bad pixels.

Image data RMSE Q p
Raw 0 1

NUC o™

NUC 1*

NUC 2m

NUC 0" + dp repl
NUC 1%+ dp repl
NUC 2" + dp repl

D. Discussion section B and C

In practice a NUC based on a 1% degree polynomial is most common, followed by an
offset correction. A 2" degree polynomial fitting is not used as often, why ?

What is the basic difference between the three image quality metrics studied in this
exercise, considering eq. (10), (11) and (13) ?

Which quality measure is in best agreement with your visual inspection in B?

The quality metrics RMSE and Q compare two images and return values of the change,
instead of absolute values. Do these metrics tell if a change is positive or negative ? If
(raw) scene data and reference data are registered at different time points they may not
match each other and in this case a reference based NUC will distort the scene data. Can
you find out a solution to this problem?

13
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E. Comparison with a standard camera

In the previous sections you have been looking at image data collected with a quite old
infrared camera. The quite noisy data made it easier to see differences before and after
the correction steps. In this section, you will compare with an infrared camera that is
more representative of a standard infrared camera.

Data are found under ‘Multiband’ and are loaded into Matlab workspace as before: load
Refdatal, etc.

E-1. Plot a scene image (raw data image) and make a visual comparison with a scene
image from the first camera

E-2. Residual non-uniformity (RNU) is a measure used to quantify fixed pattern noise in
image data from uniform surface radiators. It is defined

Ospat
RNU =
DR

-100%

where DR is the dynamic range, which is 214 for both cameras.

Use Refdata2 (both cameras). In a first step the data is averaged over time so that most of
the temporal noise is eliminated. In a second step the standard deviation gives the spatial
noise ospat. IN camera 1 the columns 351-384 contains a cluster with bad pixels in the
upper right corner which are excluded in the calculation of ospat. In camera 2 the first row
contains a time code in the upper right corner which is excluded in the calculation of
ospat. Using Matlab, ospat is calculated in the following way

RefdataTempAve = mean(Refdata2,3);
Camera 1: o4pq = std2(RefdataTempAver(:,1:350))
Camera 2: ospqr = std2(RefdataTempAver(2:512,:))

A RNU value below 0.1 % is a very good result. What can you say about the FPN quality
of the first and the second camera ?

E-3. If time remains and you are interested, you can of course repeat the steps A through
D also with the second camera.

14
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Appendix A: Schultz approximation

Schultz (polynomial fitting):
AY; =Y, —(Y)~ Zolcij<v>‘ =AY/},

Ideally only temporal noise will remain after the correction and Yf = (Y) forall pixels j

Offset:
Yjc =Yj -C, (A1)

1% degree:
Y, =Y =Cy; +Cy; Y/

Y, —C,, =(1+C,, ) Y¢

N =ﬂ (A2)
' 1+Cy
2" degree:
Cc Cc ( C)2
Y, =Y =Cy; +Cy; Y, +Cy; Y
Cc Cc 2
Y; —=Cy; :(1+C1j)-Yj +Cy; ‘(Yj )
1+C,. Y. —-C,:
By S Gl g
C,; 2j
2 2
1+C,. 1+C,. Y. -C,. 1+C,. 1+C,. Y. —C,;
chz_ 1Ji ( lJ] 4+ ) _ _ 11+\/( ij) 4+ 0j (A3)
2C,, 2C,, C,, 2C,, acZ, C,,
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