
TSBB09 Computer Exercise D

Camera Calibration 2

Code development: Andreas Robinson. Advice: Per-Erik For Forssén.

Exercise instructions: Andreas Robinson and Maria Magnusson.

Computer Vision Laboratory, Linköping University, Sweden

November 2018 - November 2022

Contents

1 Preliminaries 1

1.1 Data . 2

2 Calibration with OpenCV 2

2.1 Accessing Python . 2
2.2 Detecting calibration patterns 2
2.3 Calibrating . 4
2.4 Analyzing OpenCV's calibration 5

3 Your implementation of Zhang's calibration method 6

4 Validation of the OpenCV calibration 8

1 Preliminaries

Before attending the computer exercise it is necessary to read through this
guide to the exercise. The goal of this computer exercise is to get a complete
understanding of Zhang's calibration method [?]. The guide contains one
home exercise to be answered before the session. It is clearly marked with
a pointing �nger. The last step in Zhang's calibration method is nonlinear
minimization. To get a better understanding, beyond this computer exercise,
we recommend: http://www2.imm.dtu.dk/pubdb/views/edoc_download.

php/3215/pdf/imm3215.pdf

1

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf

A computer symbol indicates that an image has to be demonstrated during
the computer exercise.
Important: You must be able to show the teacher all plots. It is a good idea
associate your plots with the questions. E.g question 6 could have �gure
numbers 60, 61, 62 ... etc.

1.1 Data

All the data that you need for the computer exercise are located here:
/courses/TSBB09/CameraCalibration2

Make a new directiory CameraCalibration2 on your home directory and
copy the directories matlab and python there. The data/input and data/validation
directory contains a lot of data (all the calibration images) and is better not
to copy.

QUESTION 1: Look at all the images at data/input and check that they
all contain a chessboard pattern. How many calibration images are there?

2 Calibration with OpenCV

2.1 Accessing Python

The OpenCV library has a camera calibration toolbox that should be su�-
cient for most camera calibration needs. You have been provided with some
software written in Python, that takes advantage of this toolbox.

To access Python from the ISY lab computers, open a terminal and invoke
these two commands:

bash

export PATH=/courses/TSBB09/anaconda3/bin:$PATH

The correct version of Python will now be accessible.

2.2 Detecting calibration patterns

In the python directory you will �nd find_points.py. This is a small pro-
gram that can detect, locate and store coordinates of the inner corners of a

2

chessboard (not necessarily 8-by-8 squares) in a set of images. Follow the
steps a)-c):

a) Program parameters

Find the program parameters in the "main" section. Here you need to spec-
ify the input directory in images_path, where the calibration patterns are
located. Make sure the file_pattern parameter matches the image �le ex-
tensions. The output directory in data_path should point to a place in your
own home directory.

QUESTION 2: Also check the chessboard parameters to match the shape
of the chessboard in your images. How many chessboard inner corners,
(columns, rows) is speci�ed in find_points.py? What is the chessboard
tile size?

b) Execute

Execute python find_points.py. Note that the �rst time you call python,
it will take rather long time. If all went well, data_path contains a set of
images and some data �les. The images are the same as the input, but with
the detected corners and their ordering painted on top, in a zig-zag pattern.
Every calibration image is accompanied with one ".npz" and one ".mat" �le,
that contain the geometry of the calibration points and the model points.
Note that the model points are the same for all calibration images.

QUESTION 3: In Matlab, plot the model points and draw lines between
them. Check that they are given in a zig-zag pattern. How many model
points are there and do they agree with the number of chessboard inner
corners speci�ed in find_points.py?

c) Check

Ensure that for every image, the points are drawn from left-to-right and
top-to-bottom in a zig-zag pattern and that they coincide with the actual
chessboard pattern. If they don't, you need to leave the image out. In that
case, remove the corresponding ".npz" and ".mat" �les, and/or rerun the
program with a better image.

3

QUESTION 4: How many calibration points are there in each output im-
age?

2.3 Calibrating

Once corners have been detected, the command python calibrate.py will
perform the actual calibration method. Find the data_path parameter in
calibrate.py and point it to the output directory from the detection step
above. When you run the program, it will compute and print the intrinsic
camera matrix, the distortion coe�cients, and the root mean square error
(RMSE), rpe, which is based on absolute reprojection errors. The calibration
is good if the latter is less than 1.0 pixels.

QUESTION 5: What values do you get in the A-matrix, the distortion
coe�cients, and RMSE for reprojection, rpe?

QUESTION 6: Zhang's method estimates two distortion coe�cients, but
calibrate.py, which is an extension of Zhang's method, returns more than
two. What are these additional parameters?
Hint: To answer this question, you will have to study
calib3d. Camera Calibration and 3D Reconstruction,
in OpenCV's documentation. We suggest looking at version 2.4 of the li-
brary at:
https://docs.opencv.org/2.4/

(Other version, like 3.4, may be interesting beyond this computer exercise.)
A direct link is:
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_

and_3d_reconstruction.html

4

https://docs.opencv.org/2.4/
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

2.4 Analyzing OpenCV's calibration

For the remainder of this assignment, you should switch to working in Mat-

lab, or if you prefer, keep working in Python. In both cases, you have a set
of helper functions that you are free to use. For simplicity, we are defaulting
to Matlab in the remaining sections, but the Python functions are mostly
the same.

Move to CameraCalibration2/matlab on your home directory and execute
addpath functions so that the functions directory is added to your Mat-

lab path. Execute cal_help_all to get the full list of functions.

The task is now to load and plot the reprojection errors for the OpenCV
calibration. You will need to call the following functions:
load_calibration_input,
load_calibration

plot_reprojection_errors

You will want to load the �les in the output directory created by find_points.py
(data_path) and the �le calibration_cv.mat generated by calibrate.py.

The reprojection error plot shows the distances between all observed chess-
board corner points and their corresponding reprojected model points, that
have been used in the calibration.

Longer lines segments indicate larger errors. Note however, that Matlab's
quiver function which is responsible for the plotting, exaggerates the line
lengths to enhance the legibility. You can use Matlab's data cursor to get
numbers out.

QUESTION 7: Display the reprojection error plot. Which calibration point
has the worst reprojection error? Why is that, do you think?

QUESTION 8: The function reprojection_errors computes reprojec-
tion errors of all points in the calibration. Call it and plot a histogram
(histogram(..., 100, 'BinLimits', [0,5])) of the output. At which er-
ror interval is the peak located? How is this value related to the RMSE for
reprojection, rpe? Also, calculate the mean of the reprojection_errors.

5

QUESTION 9: Look up undistort_image and use it on one of the cal-
ibration images. (We suggest '14.jpg'). Display both the original and the
resulting image. What do you see? Use a digital or physical ruler.

QUESTION 10: Modify the last parameter (B) in undistort_image so
that it produces a "zoomed out" image, by scaling some elements (which
ones?). Display the results. What do you see?

3 Your implementation of Zhang's calibration method

Your task is to start from calibrate.m and calibrate_zhang.m and build
Zhang's calibration algorithm with the functions in matlab/functions.

QUESTION 11: First look at the Matlab function find_homography.m.
Is it the homogeneous or inhomogeneous solution?

When your implementation is ready, run it on the same calibration data as
before.

QUESTION 12: What values do you get in the A-matrix and the radial
distortion coe�cients?

QUESTION 13: Call reprojection_errors and calculate RMSE for re-
projection, rpe2? Also, calculate the mean of the reprojection_errors.

6

QUESTION 14: Comment out refine_homography. How does A change?

QUESTION 15: Compare A before and after refine_calibration. Try
to explain the di�erence.

QUESTION 16: Compare the reprojection errors for your Zhang imple-
mentation with the reprojection errors from the previous implementation in
OpenCVs, by plotting them in a histogram.
Tip: To show two histograms of rpes1 and rpes2 in the same �gure:
histogram(rpes1, 100, 'displaystyle', 'stairs', 'BinLimits', [0,5]);

hold on;

histogram(rpes2, 100, 'displaystyle', 'stairs', 'BinLimits', [0,5]);

hold off;

legend('OpenCV', 'Zhang')

Comment on the result!

QUESTION 17: Similarly as before with OpenCV, apply undistort_image
to '14.jpg'. Produce one normal and one "zoomed out" image. Compare with
the results you got previously with OpenCV!

7

4 Validation of the OpenCV calibration

The best calibration result we have got so far is OpenCV's calibration, where
we obtained an A-matrix and the radial distortion parameters d (k1, k2 and
k3). This gave the RMSE for reprojection, rpe = 0.47 pixels. Now we will
validate this calibration (A, d) with new test images taken with the same
camera, but on a di�erent calibration pattern. (It would have worked �ne
with the same calibration pattern as well.) These images are here:
/courses/TSBB09/CameraCalibration2/data/validation

QUESTION 18: How many chessboard inner corners are there in the new
calibration pattern?

Copy find_points.py to find_validation_points.py. Modify it so that
correct paths are set up for input and output data. The size of the chessboard
tiles does not need to be changed. (A question about this will come later.)

QUESTION 19: However, there is something else that needs to be changed.
What?

Execute python find_validation_points.py. Check that the images have
received the colorful zigzag pattern.

Investigate the function validate_finished.py. Modify it so that correct
paths are set up. Remember that A and d should be taken from OpenCV's
calibration.

QUESTION 20: Consult the documentation for cv2.solvePnP. What does
the function do? What is the output?

Finally, the reprojection errors are calculated and displayed with an image
and a histogram. The mean value and RMSE (rpe) are also calculated.

8

QUESTION 21: Write down RMSE (rpe) and mean and look at the his-
togram. How do you see that they seem reasonable?

QUESTION 22: Compare the histogram, RMSE (rpe) and mean with the
previous results in question 8. Why are the values worse now?

QUESTION 23: The size of the chessboard tiles was kept as (cb_tile_size
= 0.03475), in find_validation_points.py despite this was not true. Why
did the intrinsic calibration work anyway?

Extra Calibrate one of the cameras on your mobile phone using either OpenCV
or Zhang's method. Unwarp an image with straight edges near the camera.
Can you tell whether the distortion was reduced?

9

	Preliminaries
	Data

	Calibration with OpenCV
	Accessing Python
	Detecting calibration patterns
	Calibrating
	Analyzing OpenCV's calibration

	Your implementation of Zhang's calibration method
	Validation of the OpenCV calibration

