TSBB21, Lecture 7
Camera calibration 2

o Camera calibration 2
m Zhang’s method for 3D camera calibration
m Radial distortion
m OpenCV:s extended version of Zhang’s method
m Perspective-n-Point (PnP) pose computation

o Literature

m "A flexible new technique for camera calibration” b
Zhang, Microsoft Research. Available as short artic

le

Zhengyou
or long report.

m "Short about camera geometry and camera calibration”

by Maria Magnusson
o Literaturel, deepening
m Parts of ...

"Introduction to Representations and Estimation in Geometry”

(IREG) by Klas Nordberg
m Parts of ...

"Mathematical Toolbox for Studies in Visual Computation at

Linkoping University” by Klas Nordberg

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linkoping University




Camera calibration, general

o Photogrammetry

m A 3D calibration object is manufactured with good
precision.

Disadvantage: expensive and complicated.

m A 2D calibration object is manufactured with good
precision. It can be a plane with squares. It is shown for
the camera in different orientations. Zhang’s approach.
Advantage: cheap and simple. Lab task!

o Self-calibration

m The camera is moving in a static scene.
Advantage: Flexible.

Disadvantage: The results are not always reliable.

See also Zhang, section 1: Motivatioris




3D Camera calibration
according to Zhang

A, R, and t in C=A[Rt] can be determined individually

Calibration procedure, see Zhang: Section 3.3

0 1) Print a pattern and attach it to a planar surface.

0 2) Take a few images of the model plane under different orientations
by moving the plane. Fig. 1.

0 3) Detect feature points in the images and relate them to points in the
world.

0 4) Determine n C-matrices by calibrating n homographies. Determine A
and [Rt] from the n C-matrices.

O 5) Estimate the coefficients of the lens radial distortion from the linear
least square solution of an equation system.

0 6) Refine all parameters, including the lens radial distortion parameters
in a non-linear minimization algorithm.

O 5)and 6) are not included in the lab “Camera Calibration 17, but in the
lab “Camera Calibration 2”.
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Similar to
Fig. 1

1,2) Hold the pattern in some differ-
ent orientations and take images
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3) Detect interesting points in the images
and relate them to points in the world

(u;, v;) corresponds to (X;, Y;)

(uj, vj) corresponds to (Xj, Y])

From 1 calibration planes we can determine
n C-matrices by calibrating 7 homographies
using the technique described in the previous lecture.




4) Determine A and [Rt] -

| Eq. (18)
from the n C-matrices (Magnusson)

swv, D' =A[Rt]- (X,V,Z,1)'=A[ry 1, 13 t]-(X,V,Z,1)"

Note that: 1 T2 T3 U

r, r,and r; are [Rt] =[r1 1, 13 t]=(7y 7 T2z 0
T T T t

are orthonormal! 31732 733 73

For simplicity, assume that the planar pattern is at Z=0.

s(uv, D" =A[rp r, 13 t]-(X,7,0,1)7
=Aln , - XYy, D'=C- XY 1D

1 T2 U Ci1 Ciz2 (i3
Al 1, tf=A|m1 M2 t|=|C; Cp (3

31 T32 U3 C31 C3p (33
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4) Determine A and [Rt]
from the n C-matrices

C can only be determined up to a scale factor.

Zhang set C;;3 = 1 and introduces A as scale factor.

1 Tz U Ci1 Ciz2 Ci3

|/1 A '(7'21 22 tz) = C1 Cpy Cy3
C 31 T3z U3 C31 C3 1

A-A- [ rp tj=[h; h; h;] Before Eq. (3)

Note that Two important constraints:

r, r,t

are gone! hi AT A" h, = 0 Eq. (3)

Proof on next slide! ||hi A" A~ h; =hj A™" A™! h,

Eq. (4)




Proof of the constraints
(3) and (4)

Oz=rer, = =(XA W) XA he =
=X*hT(A")TA " he =

D WA A 20 &

{=llnl=rer =rTr =" A A h.};}

l=llrl*=rnern = R'ro=A*hfs ATA " h2
= IHTAMA R =he A AN




4) Determine A and [Rt]
from the n C-matrices, cont.
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Form a B-matrix and a b-vector:

Biy Biz Bis
B=ATA"1= |B;; B, By3|=/{insertand calculate} =
Bi3 Bz Bsz
L Ly VoY — Upf
a? a?f a?f
Y A Yoy —ueB) v
a2 w22 B2 a2 B2 B2
VoY — Upf _ Yy (VoY — uof) Vo (Woy — upB)? + g 41
a2 a2 B2 a2 32 gz
Eq. (5) b = [B11, Bi2, Bz, Bis, B3, Bas]”

Eq. (6)




4) Determine A and [Rt] "7
from the n C-matrices, cont.

Set: hishjy
This is valid: hi1hj; + hizhjq
B hizhj,
hi1 hy1 hsq Vij = hizhjy + hi1hjs
[hy hy, hz] =|hy; hyy hsy hi3hj2 + hizhjg
hiz hys hss hizhs
[|lhf B h, =v. b
Then |1 'Y Eq. (7) Check on
next slide!

RET P

[(Vn —vy2)" Eq. (8)




4) Determine A and [Rt]
from the n C-matrices, cont.

T
Vi2

Check of: [(Vll V)T b=0 Eq. (8)
Checking € ‘
® omol @ andl ATA! S /W B e }-:o
| hT B I’l."h{ﬁ"'}z/

@

8l

Viz' b | > =0 !
(\/u-\/zz)Tb




4) Determine A and [Rt] "
from the n C-matrices, cont.

. -
2X6-matrix: [( e Tyoo || Eq. (8
Vi1~ Va2) Remember:
Pile n Eqg. (8) on We have
n C-matrices
top of eachother p e matices
2nx6-matrix: Vb =0 Eq. (9) glaCﬁglgratlon

This is a homogenous equation system, which can be solved
by using SVD-technique, see next lecture,

“Short about camera geometry...” from previous lecture or
“Mathematical Toolbox ...”




4) Determine A and [Rt]

from the n C-matrices, cont.

When b is known, B is simply obtained.

The matrix B-matrix is estimated up to a scale factor:

B=1ATA"1

The parameters a, B, v, Uy, V, Can be extracted from B:

Vo = (B12B13 — B11st)/(B11Bzz - B122)
A = B33 — [3132 + v9(B12B13 — B11B23)|/B1s

a =+/A/B;
B = \//1311/(311322 — B122)

y = —Bpa’B/A
Ug = yvo/a — Byza® /A

Below Eq. (9)

A is now
determined!
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4) Determine A and [Rt]
from the n C-matrices, cont.

Note: It is slightly better to solve A from B

by using Cholesky decomposition (see Mathematical Toolbox).
Then the parameters a, B, y, Uy, V, Can be directly obtained
from A and they will probably be more accurate.




How many calibration
planes are needed?

O
O

O

O

O

One calibration plane gives one calibration matrix C.

One calibration matrix C gives one Eq.(8) with 2
equations.

There are 5 unknowns in A.
If the skew y=0, there are 4 unknowns in A.

How many calibration planes, at least, are needed to
determine A?

3 planes are needed.
2 planes are needed if y=0.

C=A[Rt] is determined up to 8 parameters by 1
calibration plane. There are 6 degrees of freedom in
[Rt], 3 rotation angles and 3 translation directions.
Consequently 8-6=2 equations are obtained for
solving A from one calibration plane.




4) Determine A and [Rt] "7
from the n C-matrices, cont.

See before Eq. (3)

A-A-[r; 1, tj=[h; h, h;]

When A is known, [Rt] is simply obtained as:

rl'l = AA_lhl

r, = AA"1h 1 1
{2 2 where 1= —

s =T XTI IA=th.||  |[A=th,||
kt = AA_th

This is written a bit below Eq. (9)




5) Radial distortion

O Radial distortion is the most common

Undis- / \\ Barrel Pincush-
torted ( ) distor- ion dis-
image: tion: tortion:
= 7
]|

o Other types of distortion: the human eye of an
astigmatic person, fisheye-lenses, telescope

Radial distorsion can be included in the calibration procedure.
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5) Radial distortion example: Extreme

wide-angle lens gives barrel distortion

o Example from Aftonbladet: Image inside the
“frimurar” room. (Anders Bjorck, Hasse Aro and

the Swedish king are members.)




5) Radial distortion, equations

(u,v) are the real image coordinates, as before.

Let us call the normalized image coordinates (x,y) instead of (un,vn):

u.
(u,v, DT = A - (—l

&

(%1

7

T
r 1) — A (un;vn; 1)T — A (nyJ 1)T

inner parameters:
a; B; V; uO; vO

|

u=a-x+y-y+u
v=pF-y+1g

undistorted image coordinates: (u, v)
distorted image coordinates: (i, ¥)
undistorted normalized image coordinates: (x, y)
distorted normalized image coordinates: (X, y)




5) Radial distortion,

p. 20

equations

undistorted image coordinates: (u, v)
distorted image coordinates: (i, ¥)

undistorted normalized image coordinates: (x, y)

distorted normalized image coordinates:

&y | [TP=x"+y?

ki and k2 are the
coefficients of radial distortion

y=y+y-(kyr® + kyr*)

Proof: See next slide.

Model: {X =x+x-(kir? + k,r?)

V=v+ W—vy) - (kyr? + k,r?)

{1‘1 =u+ (u—up) - (kir? + k,r*)

Eq. (1 1) The center of the
radial distortion is

Eq. (12) | |the same as the

principal point.
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5) Radial distortion, equations

u+ (u—ug) - (kyr? + kor?) {f‘z‘)‘“”’“"

UV=pBy+v,
v+ (v —vy) - (kyr? + kor?)

u=ax+yy+ugy
v=Ly+ vy

v

aX +yy+ug=ax+yy+ug+ (ax +yy) - (kyr? + k,r*)

aX +yy =ax+yy+ (ax +yy) - (kyr? + k,r?)

y=y+y- (kyr?+k,r*)

14

X =x+x-(kir? + kor?)

{ By +vo = By +vo + (By) - (kqr? + kpr?)
[3’ y+y- (kyr? + kyr?)

i




5) Radial distortion, equations

=u+ u—ug) (ky(x* +y%) + k(x> +y»)?) || Eq. (11)

=v+ W —vy) (ky(x? +y%) + ky(x* + y*)?) Eq. (12)
4

(u—up) - (x? +y?) (u—uo)'(x2+y2)“

(v—vg)  (x*+y%) (W—1vp) - (x*+y?)* V_V

Given m points in nimages, we can stack all equations together

to obtain in total 2/mn equations, or in matrix form as
Dk=d, where k =[k,,k,]".
The linear least-square solution is given by:

k = (D'D)"1 DTd

Eq. (13)
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Correction for radial distortion
(in the report by Zhang)
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6) Refine the parameter estimation in
a non-linear minimization algorithm

Magnusson’s notation:| | S(w v, D" = A[Rt]- (X,Y,Z, )" || Eg. (18)

Zhang's notation: _;m = A[Rt] 1‘; Eq. (1)
Point in Point in
the image the world

Can

n m
be solved by R 2
the Levenberg- Z ”mij - m(A, ki, ko, Ri»ti»Mj)” Eq. (14)
Marquardt i=1j=1

/
Projection of point M; in image i

algorithm,
Isgnonlin
in Matlab




Degenerated configurations

o If the calibration plane at the second
position is parallel with the first position,
the 2:nd homography will not give any
extra constraints




OpenCV:s extended version of
Zhang’'s method

o Contains a more advanced model for radial
distortion:
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( 14 kyr? + kyr* + kar®
1 2 3

¥ = v - _|_2 + 2 4 Dx?

X=x7 Kt + kot 1 k16 p1xXy + po (r x“)

14+ kir? + kor* + kar®

T Y T kar? & ker® + kg8

e T p1(r? + 2y?) + 2p,xy

o ky; and k, are Zhang's original coefficients for
radial distortion

O p; and p, are tangential distortion
o For barrel distortion, typically k; > 0
o For pincushion distortion, typically k; < O




Tangential distortion

o Tangential distortion occurs when the lens and the
image plane are not parallel. The tangential
distortion coefficients p, and p, model this type of

distortion.

Zero Tangentéa! Distortion

Tangentiai Distortion

Lens and sensor are parallel

(\Camera lens

Vertical plane

dITErd
SENSAr

Lens and sensor are not parallel

[\Camera lens

Vertical plane

Camera
SEMSOT

Figure from
MathWorks
Doc. of
R2019b




Tangential distortion

O A simple example:

. .




Alternative model for radial
distortion: The arctan model

Used in Lab exercise E: Panorama stitching

Let the image be described in polar coordinates: (1 6).
Then

arctan(ryp, - v)
14

Tout =

y is small, e.g. y=0.001
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Perspective-n-Point (PnP)
pose computation

0 The pose computation problem consists in solving
for the rotation and translation that minimizes
the reprojection error from 3D-2D point
correspondences.

o We used OpenCV:s solvePnP in the Camera
calibration lab 2.




Perspective-n-Point (PnP)
pose computation

o OpenCV:s solvePnP and related functions estimate the
object pose (R, t) given a set of object points (For us:
model points with tile size), their corresponding image
projections (For us: chessboard corners detected in the
image), as well as the camera intrinsic matrix (A) and the
radial distortion coefficients (d).
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o o~ -
® s ¢ 8@ Model points
@ ¢ <1 . . : :
chessboard ‘@ 0 o with tile size
. Q@ © g
corners in o 06,
the image ﬁggg{ggaxe

Camera
coordinate
system

na—2




Perspective-n-Point (PnP)

pose computation

chessboard T
corners in A
the image

u e U 0 0
v =[O0 f, ¢ 0 0
_Tl | 0 0 1] [0 0 1 ©y

rin T2 T3 te || Xu
To1 To Tz Uy Yo
31 T32 \ r33 L, Ly
 —061+6—* )L 1 _
Rt /

Model points
with tile size

o We can solve C, given the model points with tile size and
the corresponding chessboard corners in the image. This is
similar to the calibration of a flat world that we did with the

potato stick in Camera Calibration lab 1.
and A.

o We can then solve R and t from




Perspective-n-Point (PnP)
pose computation

O

The equation on the previous slide was simplified. The
radial distortion d should be included also. However,
OpenCV:s solvePnP can deal with this.

Changing the size of the chessboard tiles will change the
output translation vector t. However, this will not affect the
projection of the model. The reprojection errors will not be
affected. Also, R will be correct.




