12/7/2017

TSBB0O9 Image Sensors

Lecture X
Panorama Stitching

Equivalent cameras

* Two cameras are equivalent if they share a
common camera centre n

* For equivalent camera matrices Cand C’:

Cn=0
Cn=0

Equivalent cameras

* A 3D point x is mapped by the two cameras as

y~Cx
y ~Cx

and we have already shown that, in this case,

y ~CCy=Hy
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Rotating camera

* A (rather common) special case of equivalent
cameras appears when we have one single
camera, with fixed internal parameters, and just
rotate it about the camera centre

* Let the internal camera parameters be
represented by 3 x 3 matrix K
— Same K for both cameras

* Let 3D coordinates be defined relative to
coordinate system with origin at n
— This means thatn=[000 1]
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Rotational homography

This gives

R, and R, represent the
absolute rotation of each

C=K [R1 0] camer'a relative to the 3D
coordinate system

C =K[R,0]

* We can set R; =1 and R, = R = the rotation from the
coordinate system of camera 1 to the coordinate
system of camera 2

C =K[l 0]
C=K[RO]

Rotational homography

Furthermore:

CCT=K[I0][10]"K = K K"
C'C"=KI[RO][10]" K= KRK"
Finally:  H=KRK'(KK')!=KRK?
\_'_l
C C'(c C)?
c+
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Summary

* We take two images with a camera that just rotates about its
centre. Corresponding image coordinates in the two images are
then related as

y=Hy

where H a homography given by If H and K can be
determined, we
can also

H=KRK! = R=K'HK - determine R

where R is the relative rotations between the cameras and K is the
internal camera calibration
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Panorama stitching

* In panorama stitching, we have a set of
images that are all taken from the same
view-point but in different directions

* Given that the objects in the images are far
away this implies that the camera matrices
are approximately equivalent

— The camera centres do not have to be exactly at
the same point

07 December 2017 Klas Nordberg, LiU 8

Panorama stitching

* Each image can be transformed into any other by a
homography
— At least in the overlapping region in the two images

* In this region the homography can be estimated (how?)

* By applying the homography to an entire image from
camera C/, it can the stitched onto the image from
camera C

* Given a set of images, they can be stitched into some
reference image in the set by determining the
corresponding homography for each other image in the
set relative to the reference image

07 December 2017 Klas Nordberg, LiU 9

Example

* Two images

Images from: Automatic Panoramic Image Stitching using Invariant Features,
1JCV 2007, Matthew Brown
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Example

* From a set of corresponding points

* Estimate H that relates the 2 images
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Example

* Right image stitched onto the left image
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Practical issues

* The pixel values in overlapping regions may differ
even if the geometric transformation is correct
— Vignetting effects
— Interpolation effects
— Exposure time or illumination may be different in two
images
— Moving objects in the scene
* At each pixel:
— Take the value from only one of the two images
— Alternatively: blend

Blending weight

* For example, use a weight that is smaller at
the edges of the image and larger at the
center

This is the weight
image before the
homography
transformation

Blending

Practical issues

* To assure a homography between any pair of
images, we must have a pin-hole camera
— No significant amount of lens distortion

— Alternatively: lens distortion can be estimated and
compensated for before the stitching

Practical issues

* If the view directions between two images are
very different, the corresponding homography
will introduce a large amount of geometric
distortion in the stitched image

* Proper points in one image -> points at co in
another

— Map the images onto a sphere and stitch them there
instead of in the image plane of one of the cameras
— Image points represented by unit vectors in R3

* In this case the vectors are related by the rotation
R between the two images!
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Mapping to spherical coordinates
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Field of view (FOV) Field of view (FOV)

* The two field of view angles can be computed
from the internal camera parameters

Qp _ _w
tan 3 = k.
ay _ _h
tan 5+ = 57—

* Assumes that the principal point (=intersection of
the optical axis) has pixel coordinates (ky3,ky3)/2

The virtual image plane

Images of a plane Break

Alternative application of the homography mapping:

Images of a 3D plane

* Facades of building

* Aerial images of the Earth (satellite, aircraft...)
— Google Earth

Interpolation of images in “Google street view”

Eigenvalues and eigenvectors The spectral theorem
Definition: If A is real and symmetric (AT = A) then

¢ Given an N x N matrix A, an N-dimensional
vector
e #0, and a scalar A that satisfy

* All eigenvalues are real

¢ We can determine an orthonormal basis of RN
Ae=)e consisting of eigenvectors of A

e is an eigenvector of A, with eigenvalue A
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The spectral theorem
An algebraic consequence of this theorem:

* When A is symmetric, we can find an orthogonal
matrix E such that

A=EDE'
* E holds an ON-basis of eigenvectors in its columns

* Dis a diagonal matrix of the corresponding
eigenvalues
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Eigenvalue decomposition

* The spectral theorem implies that any
symmetric matrix A can be decomposed into a
matrix product of orthogonal and diagonal
matrices

* This is the eigenvalue decomposition (EVD) of
symmetric matrices

Eigenvalue decomposition

* Obvious limitations of the eigenvalue
decomposition
— Cannot cope with non-square matrices
— Even some square matrices cannot be
decomposed
* These shortcomings can be overcome using
the singular value decomposition

Singular value decomposition

Theorem:
* Forany N x M real valued matrix A,
—we can find an N x N orthogonal matrix U
— we can find an M x M orthogonal matrix V
—we can find an N x M real diagonal matrix S
—such that
_ This is the singular
A = U S VT value decomposition
(SVD) of A

Singular value decomposition

Example: Ais3 x 4

R
Ll I\ for 0 0 0\ |_ v1

A = u; Uz Uus 0 02 0 0 T
I | 1 /J\o 0 o3 0/ |- vi -
. -
Matrix U Matrix S Matrix VT

3x3 3x4 4 x4

Uc0(3) Ve 0(4)

Singular value decomposition

* Sis N x M diagonal (non-zero values only in
the diagonal)

* The diagonal elements of S, 7, ..., op, are real
and non-negative (with P = min(N, M))
* They are the singular values of A

* The singular values are usually ordered such
thato, >o0,> ... > 0p
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Singular value decomposition

* For singular value o}, the corresponding
columns u,and v, of U and V are the
left and right singular vectors of A,
respectively

* Notice that

Singular value decomposition

* In the case of a non-square matrix A there will
be some left (or right) singular vectors that
neither have a corresponding singular value o,
nor a right (or a left) singular vector

* In this case they are simply said to have
singular value 0 since, for example

A =
TVk T Y Av,=0 (k>P and N < M)
A uk = Uk) Vk
SVD and EVD Computation of SVD

LetAbe N x M,

* Let g, be a singular value of A, with left and
right singular vectors u, and v,

* Then

v, is an eigenvector of ATA,
T - i i 2
A'Av, = O'kZ v with eigenvalue o,
u, is an eigenvector of AAT,

T -
AA'u, = crkZ Uy
with eigenvalue 02

* This result suggests that the SVD of A can be
computed by an EVD of ATA and A AT

* This is in principle correct, but numerically not a
good approach in general

* These matrix products, in particular when N or M
are large, or A is close to singular, can introduce
numerical errors that produce larges errors in the
resulting U, S, and V

* Instead the SVD can be computed using special
numerical algorithms, not discussed here
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SVD and Matlab

* Matlab can compute the singular value
decomposition of matrix A:

[U S V]=svd(A)

produces orthogonal matrices U and V of
singular vectors and a diagonal matrix S of
singular values
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Why SVD?

* SVD can be applied to any matrix,
— this is not the case for EVD

* Some common applications:

— The null space of A is spanned by the right singular
vectors of singular value 0

— The range of A is spanned by the left singular vectors
of singular values >0

— The rank of A is the number of non-zero singular
values

— (why?)
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The orthogonal Procrustes problem

* The problem of determining R € SO(3) that

minimises

N

corp =Yy _ vk — Ry

k=1
with known {r',, r,, k=1, ..., N} is sometimes
called the orthogonal Procrustes problem
(OPP)

* Correspondences between {r’,, r,} is known!
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The orthogonal Procrustes problem

* Let A be a matrix of all vectors r’ in its columns
* Let B be a matrix of all vectors r, in its columns

* The OPP then implies to minimise

€opp = H A-RB HZ\ This is the Frobenius

norm for matrices

with R € O(3) \ The set of all 3 x 3

matrices R such that
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Solving OPP

*  We want to determine R € O(3) that
minimises

N
Dl — Ry ?
k=1

* Solution
1. Form matrices A and B fromr,and r’,
2. Compute SVD:BAT=USV"
3. R=VUT

This algorithm can
be modified to

assure that detR=1
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