TSBB21, Lecture 6
Camera calibration 1

o Camera calibration 1

Homogenous matrices for scaling, translation, rotation, skewing
The Pinhole camera model

Outer and inner parameters

3D calibration of a camera

Calibration of a flat world, a homography

Inhomogeneous and homogeneous solutions.

Camera resectioning

O Literature
m "Short about camera geometry and camera calibration”
by Maria Magnhusson

o Alternative Literature
m Parts of ...
"Introduction to Representations and Estimation in Geometry”
(IREG) by Klas Nordberg

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linkoping University




Transformation
with homogenous matrices

o A point in the 3D-world can be described in
homogenous coordinates as (X,Y,Z,1)'. It can be
transformed to a new point (X{,Y,,Z;,1)" by using
the 4x4-matrix M according to:

X1 X My Myz Myz Mgy X
Bl m. [ Y = ™Mer M2z Maz My | [V
74 Z M3y Mgy Mgzz M3zy Z

1 1 0 0 0 1 1

Wy




A homogeneous matrix

for translation

1 0 O
0 1 O
T(twtyt;)=|0 0 1
0O 0 O

Eq. (5)

|

=N
\/

Example:
X +t, 1 0 0 ¢,
Y+t,\_[(0 1 0 ¢
Z+t, 0 0 1 ¢
1 0 0 O
Note:

A normal 3x3-matrix will
not work for translation!

4:




Homogenous matrices
for scaling and skewing

0 a b
0 s, 0 0 1 d
S(Se,Sp,Se) =0 0 s. O 0 O 1 O e f 1 0
O 0 0 1 0O 0 0 1 O 0 0 1
Eq. (3) Eq. (10) Eq. (11)




Homogeneous matrices
for rotation

Eq (7)

O cosH —smH O
0 sinf@ coséO

Eq. (8)
cos @ 0 sinf O cosS 9 —sind 0 O
0 1 0 0 sin@ cos@ 0O O
Ry,=| —sinf 0 cosf O R, = 0 0 1 0
0 0 0 1 0 0 0 'H S




The Lens law (repetition)

object lens
A ( _ The lens law:
image plane

\“NB 1 1 _ 1

- a b f
U where f is the

t focal length

a _ b _
e

Size relations:

The lens law states that if the image plane is located A B B
at the distance b from the lens, then the object at = e

distance a from the lens will give a sharp image. a b f
Note that since normally a>>b => =




The pinhole camera model,
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real geometry

! The image plane is

located behind the lens!

—~ lens / pin-hole

.65

s . world—
Y coordinate
Z \l; system
X

Z

Flg J,\g‘
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The plnhOIe camera Here we use the notation:

- ideal image plane
mOd el 9 MmIrro red with coordinates (u; ,v;).
Alternatively the notation
The image |camera ideal | normalized image plane
plane is |coordinate~ lens i with coordinates
mirrored N (u, ,v,)=(u/f, v, [f)
sothatit |~ - may be used.
is located
in front of X
the lens. '
- *»\QEEQ Fig. 2
A world
Relation between the coordinate

system

coordinates of the two
coordinate systems:

. (12)

T
Wu,,v, DT =W <%% 1) =W,V W) =[Rt]-(X,Y,Z, 1T




Technique to express perspectivé’
transformation with vectors

- - Fig. 3
T T E --------------------
V \Z
(U,V,W)
- ( v; %
v, = — = —
u, and v, are "W u; v
the norma- < w U - W(?? ) =, v,m)’
lized image Upn = —F =77
coordinates \ fow Eq. (14
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Relation between the ideal image
plane and the real image plane

zeal
image plane

measured

' N

n c.g. mm .

e ‘ N image plane
@ '  measured

N\
N
N\
N\

u
=

real

S Jn pixels

> coordinate

world




11

. . P.
Relation between world coordinates
and real image coordinates

= [Rt] - (X,Y,Z, )T

u; v

T
(u,v,l)T=A-<7,7»1> Eq. (15)

(w,v, DI~ s(u,v, D" = A[Rt] - (X,Y,Z, )T

/l

equi\;alence Eq. (1 8)

q:
\




Unambiguousness, field of view "~
(FOV) and resolution

o The parameters W and s are
not unambiguously deter-
mined. Both the big ball and

coordinate—~, lens the small ball gives the same
system ) : contour in the (u;,v,)-plane.
| Consequently, we cannot
know W.

o Therefore we can also
change W to s in the
previous slide.

o It is appropriate to measure
the field of view (FOV) as the
largest measurable angle in
the U- and V-direction. (see
e.g. Lab exercise E:
Panorama stitching)

o The resolution of an object in
an image depends on the
distance from the camera.
The resolution in the U-
direction can, for example,
be measured as the FOV
angle/the number of pixels.-

FOV angle in
the i U-direction




Inner and outer parameters

Relation between world coordinates
and real image coordinates:

(w,v, D"~s(u,v,1)" = A[Rt] - (X,Y,Z, 1)

Inner parameters

Outer parameters

The inner parameters
for a camera
can be determined through
a calibration procedure.

The outer parameters
for a camera at a fix position
can be determined through
a calibration procedure.
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Outer parameters

Relation between
the coordinate systems:

ideal
image plane

U, v,w)T = .
Rt] - (X,Y,Z, 1T |

Eq. (12) || Eq. (13)

1 Tz Tz U
[Rt] = |11 T2 T3 0

31 T3z T33 U3

world
> coordinate

(t,,t,,t5): the translation of the camera in relation to the world
R: the rotation of the camera in relation to the world




Inner parameters

Relation between
the image planes:

camera

(u,v, DT =A- (—l

u-ﬁl)T
fr

a Yy U
A — (O ﬁ v0>
0O 0 1

Eq. (15)

Eq. (16)

Vi .
ideal
image plane
measured
in e.g. mm

plane
measured
in pixels

—
-~

B: scaling in the v-direction
o scaling i the u-direction
v: skewing (lack of orthogonality between horizontal and vertical axes)

(often close to 0)

|
:
|

(u,,v,): the cross-section between the optical axis and the real image plan'ex)




Inner parameters, ex

u a Yy U\ (u/f
AR
1 0O 0 1 1
(u,v) (u;, v;)
A) (ug, Vo) (0,0)
B) | (@ +up, B +ve) | (f,1)

v

Vo-

) with y=0

p. 16

> U

(ug,Vp): the cross-section between the optical axis and the real image plane,
the image center, the principal point.

o and B denotes the scaling i the u- and v-direction, respectively.
If o = B, the pixels are quadratic.
If a # B, the pixels are rectangular, but not quadratic.




Inner parameters, ex) with y # 0

u a vy Uo\ (u/f . Y
DEiI] o
1/ \o o 1/\ 1 j
(u,v) (u;, v;) ,B { /'I :'I
A) (ug, vo) (0,0) Vo @ - — — - J
B) | (@+y+ugB+vo) | (f.f) A)—~—
a
UIO

v is the skewing parameter
¢ =arctan(y/p) gives an angular measurement
¢ is normally small, i.e. close to 0 degrees




3D calibration of a camera

s(u,v,1)T = A[Rt] - (X,Y,Z, 1T

Eq. (17)

stwv, DT =C-(X,Y,Z, 1T

Eq. (18)

We will first determine C, only.

Later, we will learn how to determine A, R and t.

Depending on the variable s, €11 (1o
C can only be determined up to || C = C21 Cp
a scale factor, say . C31 Cs3y

Cl 3 C14
CZ 3 CZ 4
C3 3 CB 4

We have now two possibilites,

either make an inhomogeneous or an homogeneous solution.




3D calibration,
the iInhomogeneous solution

o Set C;, = 1. (If C;, seems to be 0, another
element can be set to 1.)

Ci1 Gz Ci3 Cyg
C=|C G (3 (o Eq. (20)
C31 (3 (33 1

The matrix C can be determined by measuring a
number of corresponding point (how many?) in the world

(X, Y;, Z) and the image (u, v;), where 1< i < N.




Inhomogeneous  [s@»D"=C- &Y.z

solution €11 Ciy

sat] /1 B4 V)| | g (20)

*
Ciz Cia
/-C= Cz1 sz Cz3 CZ4
C3; C3 Cs3 1

Egq. (19)

¢ = (Cy1,C12,C13,C14,Caq, Cap, Cy3, Cay, C31, C33, C33)

D-c=
Xl Yl Zl 1 0 0 0 0 _U,le —u1Y1 —u1Z1
O O O O X1 Yl Zl 1 _171X1 —U1Y1 _U1Z1
X2 YZ Z2 1 0 0 0 0 _u2X2 —U, Y2 _u’ZZZ

0 0 0 0 XN YN ZN 1 _VNXN _VNYN _UNZN

=f

C11 Uq
C12 %1
613 = U,
C33 Un
Eq. (22)

[11 equations give that at least 6 point-pairs (*5%2") is needed to determin& gﬂ




Show Eq. (21)
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Show 5‘#(“)
We have measured Hhe Poinjc' (K.,Y.,Z,) inthe world.
I+ corrcsponds to (u..,v.) in the 'lmaﬁe.

(IS,J?)@ s(u.) (Cn Cia Cis Cw)(k’:)
Vi) S(€Cu Czz Cz3 C2l( Y

| C31_Csr C33 | | 211

SWw =CuXi +CaYi+ Cix Zi +Cia (o)
SVt (= e (b)
3 _|= C3IY|“'C31Yf + (33 Z) + | (C)
(a,e) & w; =CoXe#CinY, +Ci3Zy + Cin
( ~CauXiw,~Caz Y, u, -C33 Z, W,
the first row in (20)

IS




Solution of the equation system

If we measure 52 point-pairs, we get 11 equations. -1
. _ c=D""-f
The equation system can be solved as:

If we measure more than 5%z point-pairs, the equation
system becomes over-determined with the solution:

.Mtore. Dtis \| D¢ = f

point-pairs : D’D.c = DTf

gives a more pillr11v C _ (DTD)—IDTf Eq. (23)
celitalh Matlab +
solution! C = DT f

D+ is the so called pseudo-inverse of D.
This is the Least Square solution of the equation system.
This is also equivalent to Maximum Likelihood-minimization.




3D calibration,
the homogeneous solution

0O In the homogeneous solution, Cs, is not set to 1. Instead C is kept as:

Ci1 Ciz Ci3 Cqg
C=|Cyy Gy (3 Cyy
C31 C33 C33 (34

O To improve performance, Hartley normalization (see e.g. IREG) is used:
= (X, Y; Z)-coordinates:
Calculate the mean and standard deviation.

Subtract the mean, divide by the standard deviation and
multiply with 2

= (u;, vy)-coordinates:
Calculate the mean and standard deviation.
Subtract the mean, divide by standard dev. and mult. with 2
O Form an equation system, see next slide.

O Solve using SVD, see next-next lecture.




Homogeneous swr )T =C & Y,2, 1)
: 4
solution Ci Gy Gz Cuy
C=|Cy Cyy Cy3 Cyy
C31 C3p C33 (34
Set: Eq. (19)
¢ = (C11,C12,C13,C14, Caq, Cyp, Cr3, Ca4, C31, C33, C33, C34)
D.-c=
X v Z 1 0 0 0 0 —-uwXy -wYs -—-wZz, -—-uy Ci1 0
0 0 0 0 Xl Y1 Zl 1 —U1X1 —v1Y1 —lel -V C12 0
Xz YZ ZZ 1 0 0 0 0 —u2X2 —u2Y2 _u2Z2 —Uy 613 =10
6 (.) (.) (.) X:N Y;V Z.N i _UI;IXN _VI.VYN _UNZN —VUpn C34 0

Matlab solution:| [U,S,V] = svd(D);

c =V(:,12);

c may then be scaled, if desired 4




From C to AJRt]

o When the matrix C is determined, it is possible
to receive A, R and t by using a little linear
algebra.

o This procedure is called camera resectioning.

o We will talk about that in the end of this
lecture.




Using the calibrated camera

o We now know how a point in the world (X,Y,Z2)T will be
mapped to a point in the image (u,v)T.

o We do not know how a point in the image (u,v)T will be
mapped to a point in the world (X,Y,Z2)T.

o But we do know that a point in the image#u,v)T
corresponds to a line in the world (X,Y,Z2)T.

o From A and an object point in the image, we can calculate
the angular direction to the corresponding object point in
the world. Then it is possible for a movable camera to
follow an object. Lab task!

o If we have more knowledge about the world, for example if
it is a flat world, we know that a point in the image (u,v)T”
is mapped to a point in the world (X,Y,Z)T. This is camera
calibration of a flat world, a homography. Lab task!

o Another possibility is to use stereo, i.e. using two
calibrated cameras. They gives one straight line, each. The
cross-section between these lines gives the exact position
of the point in the world.




Calibration of a flat world,
a homography

p. 27

Sl 1 Y
coordinate ens ;
system sJeq] \ Flg 1.4
| image plane S
% U measured N U
in e.g. mm A N real
f | M. image plane
N\ measured
\ L.
~ Inpixels
Worl(cji_ N \
Relation  coordinate s
system
Bhetween A point in the
the : image (u,v)T"
coordinate is mapped to
systems: a point in the
— p- world (X,Y.0)"
s(wv,1)" =C-(X,Y,1)" || Eq. (24) and vice verca.




Inhomogeneous solution
of a homography

S(u, v, 1)T — C ) (Xr Yr 1)T C11 C12 C13 Eq (25)
C=|C1 Cyp (3
Egq. (24) C31 (32 1
Set:
¢ = (Cyy, C12,C13,Co1, G2, C23,C31, C32) || Eq. (26) | | Eq. (27)
X1 Yl 1 0 0 0 —u1X1 —u1Y1 Cll 51
0 0O O X]_ Yl 1 _U1X1 —v1Y1 ClZ (51
0

D-c= Xz YZ 1 0

0

0 0 0 Xy Yy 1

—Uy X,  —uyY,

—vnXy —UnYy

S0
w
Il
.. 8
N
Il
)

Solution as before:

c=D*f

Matlab solution:

¢ = pinv (D) *£f;

8 equations give that at least 4 point-pairs is needed to determine C | -




Homogeneous solution

of a homography
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Note:
Hartley normalization
(see a previous slide)
may improve per-
formance!

stuv, DT =C-(X,Y, DT Ciy Cip Cy3
C=|Ca1 Cp Cy3
C31 C32 C33
Set:
C= (C11; C121 6131 621; C22' 623; 631' C32' CBS)
X1 Yl 1 O O O _u1X1 —u1Y1 —u1 C11 O
O O O X1 Yl 1 _U1X1 —171Y1 —171 C12 O
D-c= X2 Y2 1 0 0 0 _uZXZ _uZYZ —Uy C13 = 0
0 0 0 XN KV 1 _UNXN _UNYN —VUpn GB 0

Matlab solution:

[U,S8,V] = svd(D);
c = V(:Ig);

¢ may then be scaled, if desired




Camera resectioning
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(u,v, DT~A[Rt] - (X,V,Z, DT ~C-(X,Y,Z, DT

A[Rt]~ C C11 C12 €13 Cig
C= <C21 C22 (23 024>
C31 C32 (€33 (34
a Vv U 1 T2 T3 U4
A= (O ﬁ Vo [Rt] = (7‘21 o Tp3 tz)
0 0 1 31 T32 T33 U3/

~
N




Camera resectioning

O If C is not at infinity then we can always find a unique
decomposition of C into its internal A and external [R{]
parameters. This decomposition is referred to as
camera resectioning.

0 A is an upper triangular 3x3 matrix

O R is a rotational matrix, which describes rotations
around the X, Y- and Z-axes.

0 R is also an orthogonal matrix, which is a square
matrix whose columns and rows are orthogonal unit
vectors (i.e. orthonormal vectors), i.e. RTR=RRT=l,
where | is the identity matrix.

O tis a translation vector, which describes a translation
along the X, Y- and Z-axes.




QR- and RQ-factorization

0 QR-factorization decomposes a matrix B into an
orthogonal matrix Q multiplied by an upper (or right)
triangular matrix R.

o Matlab command: [Q,R] = qr (B);
O B and Q is m-by-n

0 With a trick (see Matlab code later) an rq function can be
formed, with Matlab command: [R,Q] = rq(B) ;

O In our case:
o [A,R] = rq(C(:,1:3));

Confusion:
R has different meanings!
The triangular R is marked
with turquoise.




After RQ-factorization, "
we need to:

O Fix t.
O Set element (3,3)in Ato 1.
0 R should have det(R)=1 (no mirroring)




M atla b COd e (written by Bjorn Johansson)
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function [K,R,t] = P2KRt (P)

[K,R,t] = P2KRt (P)
Computes camera matrix K, rotation R, and translation t
fron projection matrix P. Relation:

P ~ K[R t]

- 3/4 projection matrix

o0 o0 o0 o° o°

- 3/3 camera matrix

3/3 rotation matrix

o0 o° o°
W RN w©
I

- 3/1 translation vector Note:

A is now denoted K
[K,R] = rq(P(:,1:3)); C is denoted P
t = inv(K)*P(:,4);

K = K/K(3,3);




Matlab code

K should have positive sign along the diagonal
= diag(sign(diag(K))) ;

= K*D;

= D*R;

D*t;

W R O oo

R should have det(R)=1 (no mirroring)
= det (R) *t;
det (R) *R;

b B o g
|

p. 35




Matlab code

function [R,Q] = rg(A)
[R,Q] = rq(A)
Orthogonal-triangular decomposition, A = R*Q, where

R is an upper triangular matrix and

o0 o o° oP

Q is an orthogonal matrix.

= A';

= A(end:-1:1,end:-1:1);

[Q,R] = qr(B);

R =R';R = R(end:-1:1,end:-1:1);
Q =0';0 = Q(end:-1:1,end:-1:1);

i

p. 36




