1SBB21, Lecture 3
Image Formation, Lenses
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Lenses
Diffraction-limited systems

A lens produces the Fourier
transform. Derivation.

The Airy pattern. The Airy disk.
Optical transfer function (OTF)

The point spread function
=  Airy pattern
m Out-of-fucus blur

Depth of field, Circle of
confusion

F-number
Lens distortion
Vignetting and the cos* law

o Chromatic aberration

O Literature:
m  Canon Europe: Optical
Terminology

m Cos4 Law: Derivation of the Cos4
Law

m P. Danielsson: Optiska system

m R. Forchheimer: Harledning av
PSF for en tunn lins

o Thanks to:

m Klas Nordberg: Initiated this
course. Many slides in this lecture
are similar to his slides.

m Robert Forchheimer: Especially

for showing that a lens produces
the Fourier transform.

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linkoping University
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Lenses vs. infinitesimal aperture

O The pinhole camera is an ideal
model of the camera obscura.

O The pinhole camera model does
not work particularly well

In practice since:
= |f we make the aperture small, too little light enters the camera
= |f we make the aperture larger, the image becomes blurred

O Solution: we replace the aperture with a lens or a system
of lenses

0 Disadvantage:

m The lens camera only gives a perfectly sharp image for objects
in the object plane, see slides ahead.




Thin lenses

o The simplest model of a lens

0 Focuses all points in the object plane onto the
image plane

object image
plane | plane




The object plane

0 The object plane consists of all points that appear
sharp when projected through the lens onto the
image plane

o The object plane is an ideal model of where the
“sharp points” are located

m In practice: the object plane may be non-planar: e.g.
described by the surface of a sphere

m The shape of the object plane depends on the quality of
the lens (or lens system)

m For thin lenses the object plane can often be
approximated as a plane
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Thin lenses

O The thin lens is characterized by a single parameter:
the focal length f;

The lens law: o

1 N 1 1

LN object image

a b f plane : plane
a | b

O To change a (distance to object plane), we need to
change b since f, is constant

O a=wforb="f/1




Where Is the camera center
In a real lens?

0 The camera center is at EP (the entrance pupil)
i.e. the apparent position of the aperture.

| Entrance Pupil for the Pentax Super-Takumar 200mm /4 lens

Reference: Theory of the “No-Parallax” Point in Panorama Photography
Version 1.0, February 6, 2006
Rik Littlefield (rj.littlefield@computer.org)




Where Is the camera center
in a real lens?

Ray directed toward
front nodal point
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Diffraction-limited systems

O Due to the wave nature of light, even when various lens
effects are eliminated, light from a single 3D point cannot
be focused to an arbitrarily small point if it has passed an
aperture

O For coherent light:

m Huygens' principle: treat the incoming light as a set of point light
sources

m Gives diffraction pattern at the image plane




Diffraction limited systems

0 Assume an ideal lens with aperture size D:

-
-
i
=

No single
/ point, but:

—

0 Because of diffraction, a point source infinitely far away
(a planar wave) will not be focused onto a single point in
the image plane.
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A lens produces the Fourier
transform! Derivation on the following slides!

: : : Based on
o We will show that G(x) is the Fourier R Forchheimer:

transform of g(x’) (apart from a phase factor) | Harledningav PSF

for en tunn lins
0 Using Huygens’ wave model for light.

T \2 focal plane

Plane wave
Z; f G(x)

Aperture orObject lens
g(x’)
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A lens produces
the Fourier transform!

0 Add the light contribution from each point x” entering the
lens to each point x in the focal plane, taking magnitude
A and phase ¢into account.

O Magnitude is given by the object density g(x’). Phase
depends on the optical path length. Compute this
separably for the lens and the path from the lens to the
focal plane.

O Math trick: represent each light contribution by a
complex number, Ae/?, where A is the magnitude and ¢
is the phase relative to a common reference.

O 1D-analysis (can easily be extended to 2D).
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Path length through the lens

O Simplifications
m The lens is plano-convex and thin
m Paraxial approximation
m Coherent light

= Inscribe the lens within a virtual rectangular box and apply
Huygens’ principle on the light coming out from this box

Coherent light is used during the derivation.
However, since the final result does not depend on the
phase, the result can be generalized to non-coherent light.

Light rays passing through a lens are
assumed to be close to the optical axis
and at small angles with respect to it.
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Figure from:
R. Forchheimer

Path length through the lens

Use Taylor expansion

12

X
A(x) =g — (R —VRZ —x'2) = Ay —
_— 2R
o where we have used X'<< R (paraxial Incoming light ray

approximation)

O Assume that the light travels slower by a
factor n (refractive index) in the lens than in

air and exits at the same height (x’) since the

lens is thin. The "optical path length” travelled

within the virtual box will then be

X
5(x") = nA(x") + (AO — A(x')) =nlA,— (n — Dﬁ
0 Applying "Lensmakers Formula™ 1/f = (n-1)/R

gives: x'2

2f

5(x") =nA, —
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The phase transform  |rcmeimer

for the lens

O The optical pathlength 6(x")
corresponds to the phase shift:

A =2 5(x)
O Inserting:
! x’2
S(x') =nh,y — ﬁ

O and disregarding the fixed delay nA, gives the
"phase transform”:

k5
— =X 2
T, (x) = e ’2F" |where k = —;
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The phase transform  [rFocnaimer
for from lens to focal plane

Use Taylor expansion

I _ 2
Af(x'x’) = \/(x’ —x)2+f2—f= (x fo)

O where we again using the paraxial approximation

]'L (x,_x)z ; X,X focal plane
O Thus|T; = e 2/ ,

G(x)




P
Putting it all together
G(x) = J gx') T, - Trdx' =
- .k 42 .k . 2
See R. Forchheimer / —J5FX J5F (X —x /
onhowtogetridof | — fg(x)'e 217 -e Zf( ) dx’ =
the phase factor by o
moving the object to 00
the distance fin j—xz —jExxl
front of the lens. =e 2f Jg(x’) e T dx'
change_ variables according to u = x/(Af)
G(u) — ejn/lfu2 J g(x/) e—jZnuxrdxr
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This is the Fourier transform multiplied by a phase factor (of magnitude 1)!




Diffraction limited systems
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The aperture can be viewed as an
input image: g(x") = rect(x'/D)

G(u)

~—]
— e
—_—

f =
1
S~

the (diffraction) pattern:

The lens produces: G(u) = (e/™ )

sin(rDu)

ntDu

A screen at the image plane will show

sin(rDu) ?

ntDu




The 1D sinc function corre-
sponds to the 2D jinc function

0 f(x) =™ js termed the “sinc(x)” function

O This phenomena generalizes to 2D:

m The resulting wave-function G (u, v) is the 2D Fourier transform of
the incoming spatial amplitude g(x’, y")

O Example: a circular aperture of diameter D
®m (Input amplitude normalized to 1/(f1),

X2 +7y'2, p=+vuZ+v?) G&\)
—1 | Firstorder \\
g(r) — rect(D) | Bessel function |} \ e s
G(p) = a@meD/GAY | i
pD/(fA) S

O G( ) is sometimes called the jinc function because it has
similarities with the sinc function.
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The jinc function includes J,,
a Bessel function

=05}

Bessel functions /p(x)

B B . ) ({)"”" (pinteger) (0<x<o)
PE)S 2 B TpikiD)\2 ’

o (—-1)" x\n+zk = '
(X Jn(x)= % ——*(&) =~ [cos{x sing—n@)dp, n=0, 1,2, ...
k=0 k!i(n+k)!'\2 )
Ji(x)
(.f Jon(x)=(-D" Ju(x), n=1,2,3, ...
05r Ja(x)

Note that J, is somewbhzat
similar to a sinusoia! -




The Fourier transform
of a circular disc

0O The circular box g(r) and its Fourier transform G(p)

m G(p) is sometimes called the jinc function because it has
some similarities with the sinc function.

m G%(kp) is sometimes called the Airy pattern. It is the
point spread function of a circular aperture with
diameter D. This means that a point source at infinite
distance (planar wave front) will give rise to an Airy
pattern image when viewed through the aperture.




The circular box and
Its Fourier transform

Fourier domain

Spatial domain

values multiplied with 10

1“ \ "4“ S
A e

f!f i
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The Fourier transform and the
squared Fourier transform

Fourier domain Fourier domain, squared
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The Airy pattern.

The Airy disk.

O The image of a point-
source for a diffraction-
limited optical system is
called Airy pattern. The
central part is called the
Airy disk.

= Airy pattern: The image of
a focused point-source
becomes a diffraction
pattern consisting of

concentric light and dark
circles.

m The distance from center to
first dark ring is 1.22 fA/D.

m The light intensity is given
by the square of the jinc-
function.




Resolution limit

O The smallest resolvable distance in the image plane, Ax,
IS given by

Distance to the first zero crossing in G( ) lens focal length

Ax ~ 12214

Also, full width at
half maximum (FWHM)

O The Rayleigh criterion for barely resolving two objects
that are point sources of light, such as stars seen
through a telescope, is that the center of the Airy pattern
for the first object occurs at the first minimum of the Airy
pattern of the second (same equation holds).

lens diameter

light wavelength




Resolution limit

Conclusions:
O The image cannot have a better resolution than Ax

0 No need to measure the image with higher
resolution than Ax'!

0 Be aware of cameras with high pixel resolution and
high diffraction

m Image resolution is not defined by number of pixels in the
camera!




Optical transfer function (OTF)

O

The optical transfer function (OTF) of an optical system
specifies how different spatial frequencies are handled by the
system.

OTF is the Fourier transform of the PSF

For an ideal lens system, in focus, the OTF is the Fourier
transform of the Airy pattern

Summary and observation

m 1) The Fourier transform of the circular box is a jinc function.

m 2) Similarly, the Fourier transform of the jinc function is a circular box.
m 3) The Airy pattern is the jinc function multiplied with itself.
m 2)

and 3) gives that the OTF, the Fourier transform of the Airy pattern,
is a circular box convolved with itself!
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The Airy pattern and its Fourier transform,

the optical transfer function, OTF

Airy Disc

OTF

values multiplied with 10

Here
normalized
so that
OTF(0,0)=1




The point spread function (PSF)

O The PSF is a generalization of the point light source
response

m Diffraction: results in the Airy pattern function

m Qut-of-focus blur: The out-of-focus PSF takes the shape of the camera
aperture. For a circular aperture, the PSF is a disk, which is sometimes
referred to as the circle of confusion

O There are also other factors that contribute to the point
spread function

Atmospheric turbulence

Optical aberrations

Motion

m efc.
O The fact that the out-of-focus PSF takes the shape of the
camera aperture is utilized for coded apertures, see the

lecture on Specialized cameras.




Depth of field
“Skarpedjup” in Swedish

O The lens gives a focused image

m Points that are off the object plane become blurred proportional
to the displacement from the object plane

O Due to the resolution limit, it makes sense to accept blur
in the order of Ax
m This blur will be there anyway due to diffraction

O Depth of field (d) is the displacement along the optical
axis from the object plane that gives blur < Ax
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Depth of field, Depth of focus, ™
Circle of confusion

/

Lens
aperture

Permissible circle of confusion >
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Examples of defocused images of a point
source from other apertures than a circle

o Top left: a standard Canon 50mm
/1.8 lens with the aperture ’
partially closed.

O Bottom left: the resulting blur
pattern. The intersecting aperture
blades give the pentagonal shape,
while the small ripples are due to
diffraction.

O Top right: the same model of lens
but with a filter inserted into the
aperture.

O Bottom right: the resulting blur
pattern

O From Levin et al: Image and
Depth from a Conventional
Camera with a Coded Aperture




Depth of field

lens

1+1_1
a b f

O Insert a’ = a - d/2 to get the horizontal blur (b’-b)
O The horizontal blur is related to the vertical blur Ax




Depth of field, image example

0 Blur both in front of and behind the person of
Interest, who is in the object plane.




Circle of confusion,
Image example

o /5.6 is a smaller aperture than :
f/1.4

O Top image: Smaller aperture
gives less light and larger
depth of field.

a BOttom Image Larger aperture ’ f/5.6wecanseethatLexisr.\o;v. :..‘.-'.

underexposed *

gives more light and a smaller
depth of field. The woman is in
focus, but the point light
sources are defocused, giving
visible circles of confusion.

O https://www.youtube.com/watc @
h?v=eJHIVR4 dEE&t=2s 7

o Another nice video:

O https://www.youtube.com/watc .:::-Maq
h?v=Pdq65IEYFOM > >




Depth of field, equations

0 For a camera where a < oo, an
approximation(assuming d «< a) for d is

a(a—f)
Df

m ¢ = distance from lens to the object plane
= f=lens focal length

m D = lens diameter

m Ax = required image plane resolution

= d = depth of field

d ~ 2Ax




The F-number (a photography term)

o /D is the F-number of the lens or lens system

O Example
m A typical F-number of a camera = 8
= Blue light = 420 nm wavelength
m Airy disk diameter Ax=1.22 A F = 4 um

m For alens with f=15 mm we get:
md=06mata=15m




Lens distortion

O Alens or a lens system can never map straight lines in
the 3D scene exactly to straight lines in the image plane

0 Depending on the lens type, a square pattern will
typically appear like a barrel or a pincushion

o We will talk more about lens distortion in the Camera
Calibration lectures

Barrel Pincushion




Vignetting

O

Even if the light that enters the
camera is constant in all
directions, the image plane will
receive a different amount of
illumination. This effect is
called vignetting.

The attenuation of the image
towards the edges of the
image is approximately
according to cos*a, where a. is
the angle to the optical axis.

Sometimes used as a
photographic effect, but usually
unwanted.

o Can be compensated for in
digital cameras, by using a
shading correction technique.




Vignetting

O Vignetting depends partly on the smaller solid
angle from point B compared to point A.

Light from a larger solid angle
emitted from point A is focused
here

i

Light from a smaller solid angle
emitted from point B is focused
here

-
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Derivation of the cos* law

Object plane Image plane
dA ﬁ Lens area L
{1\ - e Optical axis
(dA)
0
148

o A surface element dA in the object plane is mapped through the lens onto a
surface element dB in the image plane.

O A surface element dA in the object plane is placed at the distance:
x =h/cosa

O The size of the lens area in the direction towards the surface element is:
Lcosa

0 The surface element thus irradiates the lens with the solid angle:

Lcosa L cos3a

x2 h?
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Derivation of the cos* law, cont.

Object plane Image plane
dA ﬁ Lens area L
El\ = e Optical axis
(dA)
0
148

O A surface element in the image plane with area dB has this surface directed
towards the lens:

dB cos a
O The distance between the lens and image element does not affect the
brightness, because the lens refracts the light towards the image plane.
0 Combining the two last formulas finally gives that the brightness being
proportional to:

L cos3a dB - L cos*a _ y
7 dB cosa = 2 <,i Proportional to cos* !
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Chromatic aberration

O The refraction index of matter (lenses) is
wavelength dependent

m Example: a prism can decompose the light into its
spectrum

= A ray of white light is decomposed into rays of
different colors that intersect the image plane at
different points
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Chromatic aberration
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O Sometimes clearly
visible if you look
close to the edges
through a pair of
glasses

0 Chromatic aberration
in @ photographic
lens is corrected by
combining different
types of optical glass
having different
refraction and
dispersion
characteristics.




