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TSBB21, Lecture 3
Image Formation, Lenses
 Lenses
 Diffraction-limited systems
 A lens produces the Fourier 

transform. Derivation.

 The Airy pattern. The Airy disk.

 Optical transfer function (OTF)

 The point spread function
 Airy pattern

 Out-of-fucus blur

 Depth of field, Circle of 
confusion

 F-number

 Lens distortion

 Vignetting and the cos4 law

 Chromatic aberration

 Literature:
 Canon Europe: Optical 

Terminology

 Cos4 Law: Derivation of the Cos4 
Law

 P. Danielsson: Optiska system

 R. Forchheimer: Härledning av 
PSF för en tunn lins 

 Thanks to: 
 Klas Nordberg: Initiated this 

course. Many slides in this lecture 
are similar to his slides.

 Robert Forchheimer: Especially 
for showing that a lens produces 
the Fourier transform.

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linköping University
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Lenses vs. infinitesimal aperture
 The pinhole camera is an ideal 

model of the camera obscura.
 The pinhole camera model does

not work particularly well 
in practice since:
 If we make the aperture small, too little light enters the camera
 If we make the aperture larger, the image becomes blurred

 Solution: we replace the aperture with a lens or a system 
of lenses

 Disadvantage:
 The lens camera only gives a perfectly sharp image for objects 

in the object plane, see slides ahead.

p. 2
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 The simplest model of a lens 
 Focuses all points in the object plane onto the 

image plane

Thin lenses

image
plane

object
plane

a b

p. 3
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The object plane
 The object plane consists of all points that appear 

sharp when projected through the lens onto the 
image plane

 The object plane is an ideal model of where the 
“sharp points” are located
 In practice: the object plane may be non-planar: e.g.

described by the surface of a sphere
 The shape of the object plane depends on the quality of 

the lens (or lens system)
 For thin lenses the object plane can often be 

approximated as a plane

p. 4
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 The thin lens is characterized by a single parameter:

the focal length fL

 To change a (distance to object plane), we need to 
change b since fL is constant

 a = for b = fL !

Thin lenses

p. 5
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𝑎
+
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𝑏
=

1

𝑓௅

The lens law:

image
plane

object
plane

a b



6

Where is the camera center
in a real lens?
 The camera center is at EP (the entrance pupil) 

i.e. the apparent position of the aperture.

p. 6

Reference: Theory of the “No-Parallax” Point in Panorama Photography
Version 1.0, February 6, 2006
Rik Littlefield (rj.littlefield@computer.org)
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Where is the camera center
in a real lens?
 The camera center is at the entrance pupil 

(the apparent position of the apertur)

p. 7
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Diffraction-limited systems
 Due to the wave nature of light, even when various lens 

effects are eliminated, light from a single 3D point cannot 
be focused to an arbitrarily small point if it has passed an 
aperture

 For coherent light:
 Huygens' principle: treat the incoming light as a set of point light 

sources

 Gives diffraction pattern at the image plane

p. 8
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Diffraction limited systems
 Assume an ideal lens with aperture size  D:

 Because of diffraction, a point source infinitely far away 
(a planar wave) will not be focused onto a single point in 
the image plane.

D

No single
point, but:

Plane 
wave

p. 9
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A lens produces the Fourier 
transform! Derivation on the following slides!

 We will show that G(x) is the Fourier 

transform of g(x’) (apart from a phase factor)

 Using Huygens’ wave model for light.

p. 10

Based on
R. Forchheimer: 
Härledning av PSF 
för en tunn lins 

Aperture or



11

A lens produces 
the Fourier transform!
 Add the light contribution from each point x’ entering the 

lens to each point x in the focal plane, taking magnitude 
A and phase into account.

 Magnitude is given by the object density g(x’). Phase 
depends on the optical path length. Compute this 
separably for the lens and the path from the lens to the 
focal plane.

 Math trick: represent each light contribution by a 
complex number𝐴𝑒௝థ, where A is the magnitude and 
is the phase relative to a common reference.

 1D-analysis (can easily be extended to 2D).

p. 11
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Path length through the lens 
 Simplifications

 The lens is plano-convex and thin

 Paraxial approximation

 Coherent light

 Inscribe the lens within a virtual rectangular box and apply 
Huygens’ principle on the light coming out from this box

p. 12

Light rays passing through a lens are 
assumed to be close to the optical axis 
and at small angles with respect to it.

Coherent light is used during the derivation.
However, since the final result does not depend on the 
phase, the result can be generalized to non-coherent light.
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Path length through the lens 

p. 13Figure from:
R. Forchheimer

Δ 𝑥′ = Δ଴ − 𝑅 − 𝑅ଶ − 𝑥′ଶ ≈ Δ଴ −
𝑥′ଶ

2𝑅

𝛿 𝑥′ = 𝑛Δ 𝑥′ + Δ଴ − Δ 𝑥′ = 𝑛Δ଴ − 𝑛 − 1
𝑥′ଶ

2𝑅

𝛿 𝑥′ = 𝑛Δ଴ −
𝑥′ଶ

2𝑓

 where we have used x’ << R (paraxial 
approximation)

 Assume that the light travels slower by a 
factor n (refractive index) in the lens than in 
air and exits at the same height (x’) since the 
lens is thin. The ”optical path length” travelled 
within the virtual box will then be

 Applying ”Lensmakers Formula” 1/f = (n-1)/R 
gives:

Use Taylor expansion
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The phase transform 
for the lens
 The optical pathlength 𝛿(𝑥′) 

corresponds to the phase shift:

 Inserting:

 and disregarding the fixed delay 𝑛Δ0 gives the 
”phase transform”:

p. 14Figure from:
R. Forchheimer

Δ𝜙 = ଶగ
ఒ

 𝛿 𝑥′

𝛿 𝑥′ = 𝑛Δ଴ −
𝑥′ଶ

2𝑓

𝑇௅ 𝑥′ = 𝑒
ି௝

ೖ

మ೑
௫ᇱమ

where 𝑘 =
ଶగ

ఒ
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The phase transform 
for from lens to focal plane

 where we again using the paraxial approximation

 Thus

p. 15

x’

Figure from:
R. Forchheimer

Δ௙ 𝑥, 𝑥′ = 𝑥ᇱ − 𝑥 ଶ + 𝑓ଶ − 𝑓 ≈
𝑥ᇱ − 𝑥 ଶ

2𝑓

Use Taylor expansion

𝑇௙ = 𝑒
௝

௞
ଶ௙

 ௫ᇲି௫
మ
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Putting it all together

p. 16

See R. Forchheimer
on how to get rid of 
the phase factor by 
moving the object to 
the distance f in 
front of the lens.

𝐺 𝑥 = න 𝑔 𝑥′ ȉ 𝑇௅ ȉ 𝑇௙ 𝑑𝑥ᇱ =

ஶ

ିஶ

= න 𝑔 𝑥′ ȉ 𝑒
ି௝

௞
ଶ௙

௫ᇲమ

ȉ 𝑒
௝

௞
ଶ௙

 ௫ᇲି௫
మ

𝑑𝑥ᇱ

ஶ

ିஶ

=

= 𝑒
௝

௞
ଶ௙

௫మ

න 𝑔 𝑥′  𝑒
ି௝

௞
௙

௫௫ᇱ
𝑑𝑥ᇱ

ஶ

ିஶ

𝑮 𝑢 = 𝑒௝గఒ௙௨మ
න 𝑔 𝑥′  𝑒ି௝ଶగ௨௫ᇱ𝑑𝑥ᇱ

ஶ

ିஶ

change variables according to 𝑢 = 𝑥 𝜆𝑓⁄

This is the Fourier transform multiplied by a phase factor (of magnitude 1)!
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Diffraction limited systems

D

p. 17

f

The aperture can be viewed as an

𝐺 𝑢 = 𝑒௝గఒ௙ మ sin 𝜋𝐷𝑢

𝜋𝐷𝑢

𝐺 𝑢

input image: 𝑔 𝑥′ = rect 𝑥′ 𝐷⁄

The lens produces:

A screen at the image plane will show

the (diffraction) pattern:
sin 𝜋𝐷𝑢

𝜋𝐷𝑢

ଶD
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The 1D sinc function corre-
sponds to the 2D jinc function
 𝑓 𝑥 = ౩౟౤ ഏೣ

ഏೣ
is termed the “sinc(x)” function

 This phenomena generalizes to 2D:
 The resulting wave-function 𝐺 𝑢, 𝑣 is the 2D Fourier transform of 

the incoming spatial amplitude 𝑔 𝑥′, 𝑦′

 Example: a circular aperture of diameter D
 (Input amplitude normalized to 1 𝑓𝜆⁄ , 

𝑟 = 𝑥′ଶ + 𝑦′ଶ,  𝜌 = 𝑢ଶ + 𝑣ଶ, )

 G( ) is sometimes called the jinc function because it has 
similarities with the sinc function.

First order 
Bessel function𝑔 𝑟 = ଵ

௙ఒ
 ୰ୣୡ୲

௥
஽

𝐺 𝜌 = ௃భ గఘ஽ ௙ఒ⁄
గఘ஽ ௙ఒ⁄

 

ఘ஽
௙ఒ

 
1.22

ீ
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The jinc function includes J1, 
a Bessel function

Note that J1 is somewhat
similar to a sinusoid!

p. 19
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The Fourier transform
of a circular disc
 The circular box g(r) and its Fourier transform G()

 G() is sometimes called the jinc function because it has 
some similarities with the sinc function.

 G2(k) is sometimes called the Airy pattern. It is the 
point spread function of a circular aperture with 
diameter D. This means that a point source at infinite 
distance (planar wave front) will give rise to an Airy 
pattern image when viewed through the aperture.

p. 20
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The circular box and
its Fourier transform

𝑔 𝑟

𝐺 𝜌

𝑦 𝑥

𝑣 𝑢

p. 21
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The Fourier transform and the 
squared Fourier transform

𝐺ଶ 𝜌

𝑣 𝑢

𝐺 𝜌

𝑣 𝑢

p. 22
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The Airy pattern. 
The Airy disk.
 The image of a point-

source for a diffraction-
limited optical system is 
called Airy pattern. The 
central part is called the 
Airy disk.
 Airy pattern: The image of 

a focused point-source 
becomes a diffraction 
pattern consisting of 
concentric light and dark 
circles.

 The distance from center to 
first dark ring is 1.22 𝑓𝜆 𝐷⁄ .

 The light intensity is given 
by the square of the jinc-
function.

p. 23
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Resolution limit
 The smallest resolvable distance in the image plane, x, 

is given by

 The Rayleigh criterion for barely resolving two objects 
that are point sources of light, such as stars seen 
through a telescope, is that the center of the Airy pattern 
for the first object occurs at the first minimum of the Airy 
pattern of the second (same equation holds).

lens focal length

lens diameter
light wavelength

Distance to the first zero crossing in G( )

p. 24

Δ𝑥 ≈ 1.22 𝜆 ௙
஽

 
Also, full width at 

half maximum (FWHM)
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Resolution limit
Conclusions:

 The image cannot have a better resolution than x

 No need to measure the image with higher 
resolution than x !

 Be aware of cameras with high pixel resolution and 
high diffraction
 Image resolution is not defined by number of pixels in the 

camera!

p. 25
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Optical transfer function (OTF)
 The optical transfer function (OTF) of an optical system 

specifies how different spatial frequencies are handled by the 
system.

 OTF is the Fourier transform of the PSF
 For an ideal lens system, in focus, the OTF is the Fourier 

transform of the Airy pattern
 Summary and observation

 1) The Fourier transform of the circular box is a jinc function.
 2) Similarly, the Fourier transform of the jinc function is a circular box.
 3) The Airy pattern is the jinc function multiplied with itself.
 2) and 3) gives that the OTF, the Fourier transform of the Airy pattern, 

is a circular box convolved with itself!

p. 26
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The Airy pattern and its Fourier transform, 
the optical transfer function, OTF

Here 
normalized 
so that 
OTF(0,0)=1

p. 27
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The point spread function (PSF)
 The PSF is a generalization of the point light source 

response
 Diffraction: results in the Airy pattern function

 Out-of-focus blur: The out-of-focus PSF takes the shape of the camera 
aperture. For a circular aperture, the PSF is a disk, which is sometimes 
referred to as the circle of confusion

 There are also other factors that contribute to the point 
spread function
 Atmospheric turbulence

 Optical aberrations

 Motion

 etc.

 The fact that the out-of-focus PSF takes the shape of the 
camera aperture is utilized for coded apertures, see the 
lecture on Specialized cameras.

p. 28
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Depth of field
“Skärpedjup” in Swedish

 The lens gives a focused image
 Points that are off the object plane become blurred proportional 

to the displacement from the object plane

 Due to the resolution limit, it makes sense to accept blur 
in the order of x
 This blur will be there anyway due to diffraction

 Depth of field (d) is the displacement along the optical 
axis from the object plane that gives blur ≤ x

p. 29
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Depth of field, Depth of focus,
Circle of confusion

p. 30
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Examples of defocused images of a point 
source from other apertures than a circle
 Top left: a standard Canon 50mm 

f/1.8 lens with the aperture 
partially closed.

 Bottom left: the resulting blur 
pattern. The intersecting aperture 
blades give the pentagonal shape, 
while the small ripples are due to 
diffraction.

 Top right: the same model of lens 
but with a filter inserted into the 
aperture. 

 Bottom right: the resulting blur
pattern

 From Levin et al: Image and 
Depth from a Conventional 
Camera with a Coded Aperture

p. 31
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Depth of field

 Insert a’ = a - d/2 to get the horizontal blur (b’-b)

 The horizontal blur is related to the vertical blur x

x

Depth of field (d)

a

D

b b’a’

p. 32
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Depth of field, image example
 Blur both in front of and behind the person of

interest, who is in the object plane.
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Circle of confusion,
image example
 f/5.6 is a smaller aperture than

f/1.4

 Top image: Smaller aperture
gives less light and larger
depth of field.

 Bottom image: Larger aperture
gives more light and a smaller
depth of field. The woman is in 
focus, but the point light
sources are defocused, giving
visible circles of confusion.

 https://www.youtube.com/watc
h?v=eJHlVR4_dEE&t=2s

 Another nice video:

 https://www.youtube.com/watc
h?v=Pdq65lEYFOM
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Depth of field, equations
 For a camera where 𝑎 < ∞, an 

approximation(assuming 𝑑 ≪ 𝑎) for d is

 a = distance from lens to the object plane
 f = lens focal length
 D = lens diameter
 x = required image plane resolution
 d = depth of field

p. 35

𝑑 ≈ 2Δ𝑥
𝑎 𝑎 − 𝑓

𝐷𝑓
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The F-number (a photography term)

 f /D is the F-number of the lens or lens system

 Example
 A typical F-number of a camera = 8
 Blue light = 420 nm wavelength
 Airy disk diameter x = 1.22 F ≈ 4 m

 For a lens with f = 15 mm we get:

 d ≈ 0.6 m at a = 1.5 m

p. 36
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Lens distortion

Barrel Pincushion

p. 37

 A lens or a lens system can never map straight lines in 
the 3D scene exactly to straight lines in the image plane

 Depending on the lens type, a square pattern will 
typically appear like a barrel or a pincushion

 We will talk more about lens distortion in the Camera 
Calibration lectures
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Vignetting
 Even if the light that enters the 

camera is constant in all 
directions, the image plane will 
receive a different amount of 
illumination. This effect is 
called vignetting.

 The attenuation of the image 
towards the edges of the 
image is approximately 
according to cos4, where  is 
the angle to the optical axis.

 Sometimes used as a 
photographic effect, but usually 
unwanted.

 Can be compensated for in 
digital cameras, by using a  
shading correction technique.

p. 38
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Vignetting
 Vignetting depends partly on the smaller solid 

angle from point B compared to point A.

B

ALight from a larger solid angle 
emitted from point A is focused 
here

Light from a smaller solid angle 
emitted from point B is focused 
here

p. 39
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Derivation of the cos4 law

 A surface element dA in the object plane is mapped through the lens onto a 
surface element dB in the image plane. 

 A surface element dA in the object plane is placed at the distance:

 The size of the lens area in the direction towards the surface element is:

 The surface element thus irradiates the lens with the solid angle:

Lens area L

Object plane Image plane

Optical axis

𝑥 = ℎ cos 𝛼⁄

𝐿 cos 𝛼

𝐿 cos 𝛼

𝑥ଶ
=

𝐿 cosଷ𝛼

ℎଶ

p. 40
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Derivation of the cos4 law, cont.

 A surface element in the image plane with area dB has this surface directed 
towards the lens:

 The distance between the lens and image element does not affect the 
brightness, because the lens refracts the light towards the image plane. 

 Combining the two last formulas finally gives that the brightness being 
proportional to:

Lens area L

Object plane Image plane

Optical axis

𝑑𝐵 cos 𝛼

𝐿 cosଷ𝛼

ℎଶ
ȉ 𝑑𝐵 cos 𝛼 =

𝑑𝐵 ȉ 𝐿 cosସ𝛼

ℎଶ Proportional to cos4 !

p. 41



42

Chromatic aberration
 The refraction index of matter (lenses) is 

wavelength dependent
 Example: a prism can decompose the light into its 

spectrum

 A ray of white light is decomposed into rays of 
different colors that intersect the image plane at 
different points

p. 42
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Chromatic aberration
 Sometimes clearly 

visible if you look 
close to the edges 
through a pair of 
glasses

 Chromatic aberration 
in a photographic 
lens is corrected by 
combining different 
types of optical glass 
having different 
refraction and 
dispersion 
characteristics.

p. 43


