TSBB21, Lecture 8

Panorama Stitching. Mathematical tool: SVD

0 Panorama Stitching
o Mathematical tool: SVD

O Literature
m “Panorama Stitching. Supplementary Notes” by Per-Erik Forssén
m Lastin ... "Short about camera geometry and camera calibration”
by Maria Magnusson

m Parts of ... "Introduction to Representations and Estimation in
Geometry”

(IREG) by Klas Nordberg

m Parts of ... "Mathematical Toolbox for Studies in Visual
Computation at Linkoping University” by Klas Nordberg

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linkoping University




Panorama stitching
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Determination of FOV and offset

Ideal image plane >Real image grid
TN
So. P! d (CX"CY) oP > Bl init:
/TT"%]/// ) pixels
27 wi W

O Let the world coordinate system and the
camera coordinate system be aligned:

~KX || (6y, D"~K-(X,Y,2)"

denoted K
(u,v) is now
denoted (x,y

X xZ Ki1 Kip ¢ X\
<y>~ <)’Z> = < 0 Ky Cy)(
1 Z 0 0 \Z/




Offset between optical centre
and geometrical centre

Ideal image plane >Real image grid
g X
d Y
S/ . P xa.Cy oPr \ h
/| —+—Brov .-
/V // ,// \// )
/ X/f;/:/ ////// Wi w
A\PFEV _
' L7 horiz,g = arctan((w/2 — ¢,)/K11)

vertyg = arctan ((h/ 2—cy)/ Kzz)

Note:
These angles are
normally small. IS




Determination of

Field Of View (FOV)

Ideal image plane

unit:
e.g. mm

0 Also in next slide.

>Real image grid

X

y (cx ’.Cy )

\%%

unit:
pixels

Opoy = 2 arctan(w/2/K;)
$rov = 2 arctan(h/2/K3;)

0 Proof: Panorama Stitching. Supplementary Notes.
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Determination of
Field Of View (FOV), proof

See figure 1. For simplicity, assume that horiz,g = vert,g = 0. Then the
points p; = (w; /2,0, f )T and p, = (cp + w/2, ¢y, 1)T. Therefore

cz + w/2 K1 Ko cg w; [2
Z By = 0 Koo ¢ 0
1 0 0 1 f

The first row gives Z(c, +w/2) = K1yw;/2 + ¢ f and the third row gives
Z = f. Therefore f(cgz +w/2) = K11w;/2 + ¢z f, which gives w; = wf/Ki;.
Finally, Opoy = 2 arctan(w;/(2f)) = 2arctan(w/(2K11)).

Similarly, opoyv = 2arctan(h/(2K22)).




Rotational Homographies

Xs

. Optical Centre

X1

£

Image plane 2

Image plane 1

x =0,y

X3

O Let the world coordinate system origin
and the camera origin be aligned:

1

x~KRX (x,y, 1)T~KR-(X,Y,Z)T

Ki1 Kiz ¢\ /11 T2 T13 X\

>~ O KZZ Cy r21 rZZ r23 Y /
0 0 1 31 T3 733 Z«/gw




Rotational Homographies

O The projections of a point X in the world to the points x,
and X, in the two images:

£,~KR;X| |%~KR,X

O Assume the existence of a homography H,, that maps
points from image2 to image1:

X1~H31X; X’
O Insert the expressions from above:
K R1 X ~ H21 K R2 X ' Optical Centre
. . . . f f
O This is satisfied when: IR Image plane 2

X1ii i
H21 = K R1 R'g K—l Image plane 1 /':L/

X3




Panorama stitching

O In panorama stitching, we have a set of images that
share a common camera centre (origin), i.e. the images
are all taken from the same view-point but in different
directions.

O Given that the objects in the images are far away, the
camera centres do not have to be exactly at the same
point.

O Each image can be transformed into any other by a
homography.




Panorama stitching

O By applying the homography H,, to image2 (which is
taken by camera2), it can the stitched onto image1
(which is taken by camera1).

0 By applying the homography H;, to image3 (which is
taken by camera3), it can the stitched onto image1
(which is taken by camera1).

O If both image2 and image3 are stitched onto image1,
image1 works as a reference image.

O It is possible to stitch a whole set of images onto one
reference image.

p. 10




Panorama stitching, example

O Two images taken from approximately the same view-
point:

Images from: Automatic Panoramic Image Stitching using Invariant Features,
lJCV 2007, Matthew Brown
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Panorama stitching, example

0 Mark a set of corresponding points:

O From these points: Estimate a homography H that
relates the 2 images.

/,I




Panorama stitching, example

O The right image stitched onto the left image:

p. 13
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Practical issues

O The pixel values in overlapping regions may differ
even if the geometric transformation is correct
= Vignetting effects
= |nterpolation effects
m Exposure time or illumination may be different in two
Images
= Moving objects in the scene
0 At each pixel:

= Alternative 1. Take the value from only one of the two
images
= Alternative 2: Blend




Blending weight

O For example, use a weight that is smaller at the edges of
the image and larger at the center:

This is the
weight image

before the »
homography
transformation

0 Pano1 and Pano2 are the two images transformed to the
reference grid.

O alpha1 and alpha2 are the weight image transformed to
the reference grid.

0 Normalized weighting:

Pano— alpha1-Pano1+alpha2-Panc?
B alpha1+alpha2




Blending

With
blending

Without
blending
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Practical issues

O To assure a homography between any pair of images,

we must have a pin-hole camera

= No significant amount of lens distortion is allowed
m Alternatively: lens distortion can be estimated and compensated

for before the stitching

O In the panorama computer exercise, we use the

following radial distortion model,

Tout =

arctan(rip - )

Y

m where the image is described in polar coordinates, (r, 6).

= You will manually estimate y by undistorting the images using
several different y -values. y is good when straight lines in the

world give straight lines in the image.
m yis small, e.g. y=0.001




Practical issues

o If the view direction between the reference image and the stitched
image is very different, the ‘resolution in” and the ‘size of’ the two
images will vary a lot.

O Ex) 4 images stitched to a reference image (green):

~_ _—

1

// \\
O An attempt to stitch an image from 90° view direction onto an image

from 0° view direction will result in infinity size of the stitched image.

O Solution: Map the images onto a cylinder or sphere and stitch them
there instead.
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Mapping a point (X,Y,Z)'
to the unit sphere

o A point (X,Y,Z)" is projected to the normalized image
plane (x.,¥,,1)" and then transformed to a point (x,y,1)"
on the real image grid as:

(.X', Y 1)T = K- (.X'n, Yn» 1)T

X)Y,Z2)

0 Consequently:

(xn: yTU 1)T — K_l ) (‘xl Y; 1)T

p=(xn,yn,1)

P=(xs,ys,zs)

O Finally, a simple geomet- oS
rical consideration gives: center

(xsr Vs» ZS)T — "

normalized
image plane

unit sphere




The Orthogonal Procrustes
problem (OPP)
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o If two corresponding sets of 3D points from two images are
mapped to the unit sphere, it is possible to determine the

rotation between them using OPP.
0 Consider two sets of 3D points | X = (X1, X5, ..., Xy)

and

Y= (Y, Y, .., Yy)| that are related as: | X;, = RY, + ¢,

0 where R is an orthogonal matrix and ¢, is an additive
Gaussian noise term.

O It can be shown (see e.g. Panorama Stitching.
Supplementary Notes) that

if the SVD of XY gives: | XYT = UDVT
Then:|R = UVT




Axis-Angle Representation

0 When R is determined, it is possible to find the rotation axis
n and the rotation angle a € |0, [

O n is an eigenvector of R with eigenvalue 1:

=)

n=Rn
o0 The other two eigenvalues are: Q
eia e—ia

0 Use the Matlab command [V D] = eig(R);
O The eigenvectors are in V and the eigenvalues are in D.

O More information on this can be found in e.qg. Panorama
Stitching. Supplementary...




Resampling to Spherical
Coordinates

o0 Now we have computed different R matrices for each image
to be stitched. They can then be resampled to spherical
coordinates:

Fig. lllustration of spherical coordinates. Left: A world map
painted on a sphere. Right: The same map in longitude-
latitude space.




Resampling and interpolation
from in-image Im1 to out-image Im2
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O Suppose (X2,Y2)' =T- (X1,Y1)T

0 For all points (X2,Y2) in the out-image:
m Perform an inverse mapping inv(T) to (X1,Y1) in the in-image.
m Perform interpolation, e.g. bilinear interpolation, in the in-

image, obtain a value.

m Put the value at position (X2,Y2) in the out-image

in—image

mverse
mappig  oyt—image

Y1

X1

‘(ex,cy)

M

Y2

X2

Repetition
from
TSBBO0S,
TSBB31
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o _ . Repetition
Bilinear interpolation 06,
. A — TSBB31
l_’ < 9 >
Y f(xf’yf)é """ @'?f(fo“l’yf)

vel

B/ (x,y)
f(xf’yf+1).'""'<>B"If(xf+1’yf+1)
(Azf(xf,yf) -(l—xe)+f(xf+1,yf) - X,

B = f(xf,yf +1)-(1—xe)+ f(xf +1Ly, +1)-xe
S y)=d4-(-p)+ By,

J\




Spherical coordinate system:
standard form

0 Disadvantage: Singularities at

0 = {0, }
Image
here P = (.X', Y, Z)T
A2 p
0 r? =x%+ y?% + z2

|

I

I
.y <I) (7’81110(308@5)
N y | = | rsinfsin o
.0 b 2 rcost

LIS




Spherical coordinate system:
longitude-latitude form

O Singularities at ¢ = {—%%}

I.e. above and below the camera, north and south pole.

Yo p

p=(xvy2)"

|
|
|
q): r? =x%+y%+ z°
|
:
|

\ll\ T r cos ¢ sin @
N
7 0 P = Yy — r sin Qb
Image Z T COS gb COS 9/

here




Recipe

0 For all points p(¢, ) in !;
$|

the output image:
= Transform it with

(sx,sy,s)! = ~KRp(¢, 0)

= Receive the position
(x,y) in the input image.
= Perform bilinear inter-

polation in the input
image, obtain a value.

= Put the value at position
(¢, 6) in the output image

0 Output image

Note that, normally, there are
several input images, e.g. three.
The reference image (red) have
the rotation R=l, the identity
matrix. The other images (blue
and green) have rotations R=R,
and R=R,, relative to the ;
reference image. Vs
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Singular value decomposition
(SVD)

Theorem:

0 For any NxM real valued matrix X,
= we can find an NxN orthonormal matrix U
= we can find an MxM orthonormal matrix V
= we can find an NxM real diagonal matrix S
= such that:

X = USsv’

m This is the singular value decomposition (SVD) of X
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Singular value decomposition
(SVD)

0 S is NxM diagonal (non-zero values only in the
diagonal)

O The diagonal elements of S, o4, ..., Op, are real
and non-negative (with P = min(N, M))

O The diagonal elements of S are the singular
values of X

O The singular values are usually ordered such
thato, 20,2 ... 2 0p
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Singular value decomposition
(SVD)

O For singular value o,, the corresponding
columns u, and v, of U and V are the
left and right singular vectors of X,
respectively.

0 Notice that | Xv,, = g, uy,

T —
X U, = 0, Vg

0 Remember that |X = ySv7
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Singular value decomposition
(SVD)

o In the case of a non-square matrix X
there will be some left (or right) singular
vectors that neither have a corresponding
singular value o, nor a right (or a left)
singular vector.

0 In this case they are simply said to have
singular value 0 since, for example

Xv, =0 (k>P,and N <M)




Solution of a homogeneous
system of equations using SVD

O

Regard the following
homogeneous system of
equations:

Xb=20

Perform SVD and rewrite:

USVib =0
UTusvib =0
SVib =0

O Solution:

O where u is a scale factor

and v, is the last column
of V

O Matlab code:
[U,S,V] = svd(X)
b =V(:,n);
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Example: Solve [xb=0

0 Suppose that X is a 4 x 3-matrix. Since X = USVT, we have:

11 T19 T3 U191 U9 U3 U4 / oF] U [} - ‘ 1
. . | : V11 V21 V31
To] T9n T3 g1 Uy U9y o4 0 o9 0 |
y . _ — Vi2 U2 V33
31 I392 I33 Uzl Uzns 1Uzz U4 0 0 a3
; o i 4 D U13 U23 U33
41 T42 T43 tg] Ug2 U443 Ugy \
O Previous slide gave: | gyTp = 0

o Solution: |b = uvs = ,u(v13,v23,v33)T Insert;

op 0 0 ”
0 o9 O U1 V21 V31 V13 0
0 0 o3 Ul V22 Va2 M| V23 | = 0
0 0 0 v13 V23 U33 U33 o3

o The smaller o;, the better solution and o; = 0 solves
Xb=0 perfeCtIy. IS




