TSBB21, Lecture 4b
Camera calibration 1

o Camera calibration 1

Homogenous matrices for scaling, translation, rotation, skewing
The Pinhole camera model

Outer and inner parameters

3D calibration of a camera

Calibration of a flat world, a homography

Inhomogeneous and homogeneous solutions.

Camera resectioning

O Literature
m "Short about camera geometry and camera calibration”
by Maria Magnhusson

o Alternative Literature
m Parts of ...
"Introduction to Representations and Estimation in Geometry”
(IREG) by Klas Nordberg

Maria Magnusson, CVL, Dept. of Electrical Engineering, Linkoping University




Transformation
with homogenous matrices

o A point in the 3D-world can be described in
homogenous coordinates as (X,Y,Z,1)". It can be
transformed to a new point (X,,Y,,Z,,1)" by using
the 4x4-matrix M according to:
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A homogeneous matrix

for translation

1 0 O
0 1 O
T(ty tyt;)=|0 0 1
0O 0 O
Eq. (5)

|
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Example:
X +t, 1 0 0 ¢,
Y+¢t,\_[0 1 0 ¢ |
Z+t, 0 0 1 ¢
1 0 0 0
Note:

A normal 3x3-matrix will
not work for translation!

vﬂ \;\




Homogenous matrices
for scaling and skewing

0 a b
0 s, o 0 1 d
S(Se,Sp,Se) = 0 0 s. O 0 0 1 O e f 1 0
O 0 0 1 0O 0 0 1 O 0 0 1
Eq. (3) Eq. (10) Eq. (11)




Homogeneous matrices
for rotation

Eq (7)

O cosH —smH O
0 sinf@ cos@

Eq. (8)
cos 6 0 sinf O cosS 9 —sind 0 O
0 1 0 0 sin@ cos@ 0O O
Ry=| —sinf 0 cosf O R, = 0 0 1 0
0 0 0 1 0 0 0 N S




The Lens law (repetition)

object lens

A

image plane

The lens law states that if the image plane is located
at the distance b from the lens, then the object at

distance a from the lens will give a sharp image.
Note that since normally a>>b =>

The lens law:

1 1 1

a b f

where f is the
focal length

Size relations:

A B B
a_bel




The pinhole camera model,
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real geometry

! The image plane is

located behind the lens!

—~ lens / pin-hole

.65

s . world—
Y coordinate
Z \l; system
X

Z

F lg ~1,§4‘
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The plnhOIe Camera Here we use the notation:

" ideal image plane
mOd el ’ Mirro red with coordinates (u; ,v;).
Alternatively the notation
The image |camera ideal | normalized image plane
plane is |coordinate~ lens - with coordinates
mirrored I\ (u, ,v,)=(u/f, v, [f)
sothatit |~ - may be used.
is located
in front of X
the lens. '
- @ Fig. 2
A world
Relation between the coordinate

system

coordinates of the two

coordinate systems: o
N -

W Qv 107 = W (f’f’ 1) = UV, W) =R (X,¥,2,7 | &
7S




Technique to express perspectivé’
transformation with vectors

- > Fig. 3
T CI) E --------------------
- (U,V,W)
( v, V
V), = — = —
u, and v, are "f W u; v
the norma- < w, U = W (7,7 ) = (U, V,W)T
lized image Uy = — = —
coordinates \ fow Eq. (14
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Relation between the ideal image
plane and the real image plane

zeal
image plane

measured

' N

mc.g. mm .

nee ‘ N image plane
@ ' > measured

N\
N
N\
N\

u
=

real

S Jn pixels

> coordinate

world
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Relation between world coordinates
and real image coordinates

=[Rt] - (X,Y,Z, )T

u; v

T
(u,v,l)T=A°<7;7»1> Eq. (15)

(wv,DI~s(u,v, D" =ARt] - (X,Y,Z,1)"

/l

equi\;alence Eq. (1 8)




Unambiguousness, field of view "~
(FOV) and resolution

o The parameters W and s are
not unambiguously deter-
mined. Both the big ball and

coordinate~ lens the small ball gives the same
system ! : contour in the (u;,Vv;)-plane.
| Consequently, we cannot
know W.

o Therefore we can also
change W to s in the
previous slide.

o It is appropriate to measure
the field of view (FOV) as the
largest measurable angle in
the U- and V-direction. (see
e.g. Lab exercise E:
Panorama stitching)

o The resolution of an object in
an image depends on the
distance from the camera.
The resolution in the U-
direction can, for example,
be measured as the FOV
angle/the number of pixels.-

FOV angle in
the | U-direction




Inner and outer parameters

Relation between world coordinates
and real image coordinates:

(w,v, D"~s(u,v,1)" = A[Rt] - (X,Y,Z, 1)

Inner parameters

Outer parameters

The inner parameters
for a camera
can be determined through
a calibration procedure.

The outer parameters
for a camera at a fix position
can be determined through
a calibration procedure.
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Outer parameters

Relation between
the coordinate systems:

ideal
image plane

U, v,w)T = .
Rt] - (X,Y,Z, DT |

Eq. (12) || Eq. (13)

1 Tz T3 U
[Rt] =11 T2 T3 0

31 T3z T33 U3

world
> coordinate

(t;,t,,t5): the translation of the camera in relation to the world
R: the rotation of the camera in relation to the world




Inner parameters

Relation between
the image planes:

camera

(u,v, DT = A-(—L

u-ﬁl)T
fr

a Y U
A — (O ﬁ v0>
0O 0 1

Eq. (15)

Eq. (16)

Vi .
ideal
image plane
measured
in e.g. mm

u

real
image
plane

measured

in pixels

—
~~~
—
—

B: scaling in the v-direction
o scaling i the u-direction

v: skewing (lack of orthogonality between horizontal and vertical axes)

(often close to 0)

(u,,v,): the cross-section between the optical axis and the real image pIane\\s‘i




Inner parameters, ex

u a vy U\ (u/f
06
1 0O 0 1 1
(u,v) (u;, v;)
A) (U, o) (0,0)
B) | (@ +up,B+vo) | (f,1)

v

Vo-

) with y=0
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» U

(ug,Vp): the cross-section between the optical axis and the real image plane,
the image center, the principal point.

a and B denotes the scaling i the u- and v-direction, respectively.
If o = B, the pixels are quadratic.
If a # B, the pixels are rectangular, but not quadratic.




Inner parameters, ex) with y #0

u a v u i/ f _ Y
DEI] o
1/ \o o 1/\ 1 j
(u,v) (u;, v;) ,3 { /'I :'I
A) (ug, vo) (0,0) Vo @ - — — - J
B) [ (@+y+ugB+vo) | (f.f) A)M—~—
a
'LI,IO

v is the skewing parameter
¢ =arctan(y/p) gives an angular measurement
¢ is normally small, i.e. close to 0 degrees




3D calibration of a camera

s(u,v,1)T = A[Rt] - (X,Y,Z, 1T

Eq. (17)

stwv, DT =C-(X,Y,Z, 1T

Eq. (18)

We will first determine C, only.
Later, we will learn how to determine A, R and t.

Depending on the variable s,
C can only be determined up to
a scale factor, say A.

Ci1 Ci2 Ciz3 Cyg
C=|C1 Cyy (3 Cyy
C37 C32 C33 (34

We have now two possibilites,

either make an inhomogeneous or an homogeneous solution.




3D calibration,
the inhomogeneous solution

o Set C;, = 1. (If C5, seems to be 0, another
element can be set to 1.)

Ci1 Gz Ciz3 Cyg
C=|C G (a3 (o Eq. (20)
(31 (32 (33 1

The matrix C can be determined by measuring a
number of corresponding point (how many?) in the world

(X, Y;, Z) and the image (u, v;), where 1< i < N.




Inhomogeneous  [s@»D'=C- &Y.z 1

- 5
solution Cii Ciz Ciz Cug
/- C=|Ca (2 (23 (2
‘ C31 C32 C33 1
7 4 Eq. (21)| | Eq. (20)
Set:
/ Eq. (19)
¢ = (Cy1,C12,C13,C14,Caq, Cap, Ca3, Coy, €31, C33, C33)
D-c=
Xl Yl Z1 1 0 O O O _U,1X1 —u1Y1 —u1Z1 Cll u1
0 O 0 O X1 Yl Zl 1 _lel —U1Y1 —U1Z1 ClZ vl
X2 YZ Z2 1 0 O O O —u2X2 _u2Y2 —u2Z2 (:13 — u2
6 O 0 O XN YN ZN 1 —UNXN _vNYN _UNZN C33 UN

[11 equations give that at least 6 point-pairs (*5%2") is needed to determina d




Show Eq. (21)
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Show E@(ll)

We have measured the poind (X.,Y.,Z;) inthe world.

I+ corresponds Yo (u,v) in the Image.

(|8, 9)> s ( u.) (Cu Cia Ci3 Cw) ¥,
Vil (€ Czz Cz3 C2)| Y
| Cu Cx C33 | le

Sw =CuXi *CaVYi+ Cin Zi +Civ (o)

SYt = e (b)

S = CuX+CaY +GaZiy+ 1 (o)
(a,c) &2 w;, =Co XetCi2VY, +Ci3Zy + Ciu

~CauXiu,~CazYiu -C33 2w,
the first row in (20

NS




Solution of the equation system

If we measure 52 point-pairs, we get 11 equations. -1
. _ c=D""-f
The equation system can be solved as:

If we measure more than 5%z point-pairs, the equation
system becomes over-determined with the solution:

T pris \| D¢ = f

point-pairs : D'D.c = DTf

gives a more pillr11v c — (DTD)"!D'f Eq. (23)
certain
solution! ALl C = D*f

D+ is the so called pseudo-inverse of D.
This is the Least Square solution of the equation system.
This is also equivalent to Maximum Likelihood-minimization.




3D calibration,
the homogeneous solution

0O In the homogeneous solution, Cs, is not set to 1. Instead C is kept as:

C11 C12 C13 C14
C= C21 C22 C23 CZ4
C31 632 C33 C34

O To improve performance, Hartley normalization (see e.g. IREG) is used:
= (X, Y; Z)-coordinates:
Calculate the mean and standard deviation.

Subtract the mean, divide by the standard deviation and
multiply with 2

= (u;, vy)-coordinates:
Calculate the mean and standard deviation.
Subtract the mean, divide by standard dev. and mult. with 2
O Form an equation system, see next slide.

O Solve using SVD, see next-next lecture.




Homogeneous
solution

stu,v, DT =C-(X,Y,Z, 1T

Ci1 Ci C13 Cia
C= C21 sz C23 C24
C37 C32 (33 (34

Set: Eq. (19)
¢ = (C11, €12, Cy3, Cra, Coq, Cop, Ca3, oy, C31, (32, C33, C34)
D-c=
X v Z 1 0 0 0 0 —-uwXy -wYs -—-wZz, -—-uy Ci1 0
0 0 0 0 Xl Y1 Zl 1 —U1X1 —v1Y1 —lel -V C12 0
Xz YZ ZZ 1 0 0 0 0 —u2X2 —u2Y2 _u2Z2 —Uy 613 =10
0 0 0 0 XN YN ZN 1 _vNXN _VNYN _UNZN —VUpn C34 0

Matlab solution:| [U,S,V] = svd(D);

c =V(:,12);

¢ may then be scaled, if desired LIS




From C to AJRt]

o When the matrix C is determined, it is possible
to receive A, R and t by using a little linear
algebra.

o This procedure is called camera resectioning.

o We will talk about that in the end of this
lecture.




Using the calibrated camera

o We now know how a point in the world (X,Y,Z2)T will be
mapped to a point in the image (u,v)'.

o We do not know how a point in the image (u,v)T will be
mapped to a point in the world (X,Y,Z)T.

o But we do know that a point in the image#u,v)T
corresponds to a line in the world (X,Y,Z2)T.

o From A and an object point in the image, we can calculate
the angular direction to the corresponding object point in
the world. Then it is possible for a movable camera to
follow an object. Lab task!

o If we have more knowledge about the world, for example if
it is a flat world, we know that a point in the image (u,v)T
is mapped to a point in the world (X,Y,Z)T. This is camera
calibration of a flat world, a homography. Lab task!

o Another possibility is to use stereo, i.e. using two
calibrated cameras. They gives one straight line, each. The
cross-section between these lines gives the exact position
of the point in the world.




Calibration of a flat world,
a homography
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St i Y
coordinate ens ;
system sdenl \ Flg 1.4
| image plane S
-y U measured N U
in e.g. mm A N real
f | M. image plane
N\ measured
\ L.
~ Inpixels
Worl(cji_ S \
Relation  coordinate N
system
Bhetween A point in the
the : image (u,v)T"
coordinate is mapped to
systems: a point in the
— p- world (X,Y.0)*
swr, DT =C- (XY, D" || Eq. (24) and vice Ve!sa.




Inhomogeneous solution
of a homography

S(u, v, 1)T =C- (X, Y! 1)T Cll ClZ 613 Eq (25)
C=|Cx1 Cp (33
Egq. (24) C31 (32 1
Set:
¢ = (Cyy, C12,C13,C1, G2, Ca3,C31, C32) || Eq. (26) | | Eq. (27)
X1 Yl 1 0 O 0 _u:le —u1Y1 Cll u]_
0 0 0 X1 Yl 1 _U1X1 —U1Y1 Clz U1
D.-c= X2 YZ 1 0 0 0 —u2X2 —u2Y2 (:13 = U, =f
0 0 0 Xy Yy 1 —vyXy —vaty/ \Gi/ \vw

Solution as before:

c =D*f

Matlab solution:

c = pinv (D) *f;

8 equations give that at least 4 point-pairs is needed to determine C | -




Homogeneous solution

of a homography

Hartley normalization
(see a previous slide)
may improve per-

.29
Note: P

formance!

stwv,DT=C- (X, Y, DT Ci;y Cip Cy3
C=10C Gy Cy3
C31 C32 C33
Set:
C= (Cllr C12' C13! Cer C22' C231 C31r C32' C33)
X1 Kl 1 0 0 0 ‘ﬂhXi _uﬂﬁ —Uq (&1 0
0 0 0 X& n_ 1 —val _vln_ —Vq (HZ 0
D-c= Xz YZ 1 0 0 0 _u2X2 _u2Y2 —Uy 613 =10
O 0 0 XN YN 1 _UNXN _UNYN _UN C33 0

Matlab solution:

[U,S8,V] = svd(D);
c = V(:Ig);

¢ may then be scaled, if desired
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Camera resectioning

(u,v, DT~A[Rt] - (X,V,Z,1D)T ~C-(X,V,Z, DT

A[Rt]~ C C11 C12 C13 Cia
C=|C1 Cy2 Cz3 Cypy
C31 (€32 (€33 (34

a ¥y U 1 T2 Tz U
A=(0 B v [Rt] = (7"21 T2 123 tz)
14

31 T3 T33 (3




Camera resectioning

o If C is not at infinity then we can always find a unique
decomposition of C into its internal A and external [Rt]
parameters. This decomposition is referred to as
camera resectioning.

O A is an upper triangular 3x3 matrix

O R is a rotational matrix, which describes rotations
around the X, Y- and Z-axes.

0 R is also an orthogonal matrix, which is a square
matrix whose columns and rows are orthogonal unit
vectors (i.e. orthonormal vectors), i.e. RTR=RRT=l,
where | is the identity matrix.

O tis a translation vector, which describes a translation
along the X, Y- and Z-axes.




QR- and RQ-factorization

O QR-factorization decomposes a matrix B into an
orthogonal matrix Q multiplied by an upper (or right)
triangular matrix R.

O Matlab command: [Q,R] = gqr (B) ;
O B and Q are m-by-n

0 With a trick (see Matlab code later) an rq function can be
formed, with Matlab command: [R,Q] = rq(B) ;

O In our case:
o [A,R] = rq(C(:,1:3));

Confusion:
R has different meanings!
The triangular R is marked
with turquoise.




After RQ-factorization, "
we need to:

O Fixt.
O Set element (3,3) in Ato 1.
0 R should have det(R)=1 (no mirroring)




Matla b COde (written by Bjorn Johansson)

function [K,R, t] P2KRt (P)
[K,R,t] = P2KRt (P)
Computes camera matrix K, rotation R, and translation t
fron projection matrix P. Relation:
P ~ K[R t]

- 3/4 projection matrix

o0 o0 o° o° o

- 3/3 camera matrix

3/3 rotation matrix

o° o° oP
+ W RN W
|

- 3/1 translation vector Note:

A is now denoted K
[K,R] = rq(P(:,1:3)); C is denoted P
t = inv(K)*P(:,4);

K = K/K(3,3);
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Matlab code

oP + W RN O o
I

At

should have positive sign along the diagonal
diag(sign(diag(K))) ;

= K*D;
= D*R;

D*t;

should have det(R)=1 (no mirroring)
det (R) *t;
det (R) *R;
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Matlab code

function [R,Q] = rg(A)
[R,Q] = rq(A)
Orthogonal-triangular decomposition, A = R*Q, where

R 1s an upper triangular matrix and

o0 o0 o° oP

Q is an orthogonal matrix.

= A';

= A(end:-1:1,end:-1:1);

[Q,R] = qr(A);

R =R';R = R(end:-1:1,end:-1:1);
Q =0Q';0 = Q(end:-1:1,end:-1:1);

>
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An exercise

Exercise

Assume that x = (X,Y. Z.1)T are the homogeneous coordinates of a point in the
world coordinate system and that y = (U, V., W)T are the coordinates of the point
in the camera coordinate system. The relation between the two coordinates are

y = [Rt] x.

Initially, the camera coordinate system and the world coordinate systems are aligned.
The camera system is then rotated an angle 60° about the Z-axis. and finally trans-
lated so that the camera center ends up at position (0, 0, 500) in the world coordinate
system. What is [R t] matrix after these transformations?




Answer
The camera coordinate system is transformed with

/05 —0866 0 0
0866 05 0 0

M= 0 0 1 500
0 0 0 1

Because transformation of a coordinate system with M, corresponds to transform
its coordinates with

0.5 0.866 0 0
—0.866 0.5 0 0
=
M= 0 0 1 =500
0 0 0 1

the desired matrix is

0.5 0866 0 0
Rt]=|-0866 05 0
0 0 1 =500

-




