TSBB21, Lecture 2
Image Sensing

o Image sensing and the digital o The output voltage
image sensor = Fixed pattern noise

o Two photo detectors, the = Signal-to-noise ratio
photodiode and the MOS = Dynamicrange

o Thermal excitation and noise o Color cameras

The readout problem, the CCD : ?z::p 2::2:2
array and the CMOS camera P

= Bayer filters
Rolling or global shutter

u]

o o mm
o Blooming o Thanks to:
o Fill factor and micro-lenses = Gonzales & Woods: Digital Image
o Noise sources Prggessing, G'Iobal Edition, 4th
) X edition, a few images.
o Shot noise (or photon noise, = Klas Nordberg, who initiated this
or Poisson noise, or Quantum course. Many slides in this lecture
noise) are similar to his slides.
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Image sensing

o In the previous lecture we saw how light reflected (or emitted) from
objects in a 3D scene is projected onto the image plane of a camera

o In this lecture we will see how this image is sensed to produce a
digital image

o Detailed physics/electrical explanation about image sensors is in a
lecture next week

o Main method

= The image is spatially sampled and truncated

= Photons are converted to electric charge/voltage

= The charges are converted to voltage g

= The voltage is quantized (A/D-converted) FF 2
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Two main types of Two main types of
photo detectors photo detectors
o0 Most image sensors are based on either of two .
distinct types of photodetectors \§9
= The photodiode (the photovoltaic effect) $ v+
= The MOS capacitance (intrinsic absorption) e
= MOS = metal-oxide semiconductor %
O Both can be manufactured using standard T R
semiconductor processes
o0 Both can be seen as a capacitor which is =
discharged/charged by means of / -
) photo _Photodlode MOS
(and lyermos S€€ 2 slides ahead) _
7




Thermal excitation

o Because of heat in the material:

m Electrons are always excited (moved from the valence band to
the conduction band) due to thermal energy in the material

= This induces an electric current /g,

_Y%
Ithermo X fe kT

Qg is the gap between the material’s valence and conduction
bands

E is the electric field
T is the absolute temperature
k is Boltzmanns constant

The read-out problem

o Light has caused a change in electric voltage or charge in a light
detector element (photodiode or MOS capacitor), and this change
needs to be measured to produce an image

o Traditionally not measured per detector element

= Would require many components per detector
= Would give too small fill factor for 2D arrays

o The read-out problem:

= The voltage/charge has to be transported out of the array and sensed
outside

= Often with a single sensing unit per sensor array or per column
o Two principles for solving the read-out problem
= The CCD array (MOS capacitor only) (the traditional, older approach)
CCD = Charge Coupled Device

= Switches to a common signal/video line
(photodiode or MOS capacitor) (increasingly more common!)

p. 10
Thermal noise
O lyermo IS NOt @ constant current, it is rather a
noise signal with a mean given by the last
expression.
o We have to treat it as a random signal added
onto the desired signal /,,,,
o We will return to the noise issue later
p. 12

The CCD array Nobel Price

(Now used more and more seldom) |_in2009!
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3 Transfer
Potential minimum

for electrons direction

o A chain of MOS capacitors where the voltages change in
the pattern shown above can “move” the charge

o This transport can take place along an entire row/column
of a detector array

o One pixel = 3 capacitors

o At the end, a charge-to-voltage translation is done
(charge amplifier)




p. 13
o CMOS = complementary MOS ‘CMOS illustated ‘
o MOS= metal-oxide _
semiconductor
PMOS
o Both PMOS (P-doped MOS)
and NMOS (N-doped MOS)
are included
o Closing/breaking contact ( |
o Consumes no power
— gnd
p. 15

Rolling or global shutter

o For a CMOS camera, the simplest approach is to
Ir_nake the exposure and read-out happen line after
ine

o Each successive line is exposed at successive
points in time.

o Called: rolling shutter. Alternative: global shutter

o For a stationary scene, rolling shutter is OK

o If the camera or the scene is moving, rolling
shutter may distort the image
o This is called:
= Rolling shutter problem
u Jello/jelly effect
= CMOS distortion
o CCD usually use a global shutter

. p. 14
Photodiode arrays
(CMOS cameras)
o The photo diode charges are read-out one row at a time via parallel
column bus lines
o CMOS devices without individual pixel amplifiers are called passive
pixel sensor (PPS)
o Example: 1-transistor (1T) pixel array
= Column amplifiers convert i i i i
charge to voltage & i i i i
For each addressed row, the | * = ] § U B L R
photodiode charges are * * & & 1%
translated into voltages using P e = e
charge amplifiers. x £ & %
charge
The column decoder outputs Y Y Y Y ampiters
one column at a time. X =\ COLUMN DECODER

l output

Jello effect/ CMOS distortion *

example
o CMOS distortion image found on the Internet
- - - . -
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Blooming

o Both the photodiode and the MOS capacitor
“collect” electric charge in a small region
corresponding to the conductor region

o When this region becomes saturated, the
charge spills over to neighboring elements

o This is called blooming '

o Barriers between the
detectors can reduce
this effect, but not
eliminate it entirely

Image illustrating
blooming found
on the Internet:

Micro-lenses

o0 To overcome low fill factors, an array of micro-
lenses in front of the sensor array can be used

s
L S

N \ —
photosensitive <d5’a photosensitive

Fill factor

o In practice, the light sensitive area of an image sensor
cannot fill the entire detector area.

o Electronic components and wiring reduce the light
sensitive area

o The fill factor is the percentage of the total area which is
light sensitive

Light sensitive area

Total pixel area ————— =

Micro-lenses

o Micro-lenses enhance the fill factor

o But

= Due to the manufacturing process, the detector area
can often have an inhomogeneous sensitivity

m When light is focused onto a smaller spot in the
sensor, the inhomogeneities become more noticeable
as measurement noise

= At high incident angles, this spot may miss the
detector area, see the previous illustration




Noise sources

O Reset noise
m The measured voltage depends on the “fix” bias
voltage over the photo diode or MOS capacitor
m This voltage has always some amount of variation =
noise
o Flicker or 1/f noise

= Inhomogeneities and impurities in the materials
produce low-frequency noise due to statistical
fluctuations in various parameters which control the
photon-to-voltage conversion

o0 These two factors may vary both across the
array (spatially) and over time

.21

Noise sources

o0 The space-charge region is not a perfect isolator
=> there is a small leakage current

m Called dark current since it discharges the capacitor
even when no photons are absorbed

o Thermal noise (explained in two earlier slides)
m Can be reduced by cooling
o Design noise effect: blooming, after-effects

.22

Shot noise (or photon noise,
or Poisson noise, or Quantum noise)

o Even if a constant number of photons hit the
photodetector, the absorption process is a
probabilistic phenomenon:

m Each time we observe/measure the voltage/charge
difference at the detector, there will a small variation
in the result

m This variation is larger the shorter the exposure time
is, and vice versa

m This noise has approximately a Poisson distribution

= Known as shot noise, photon noise, or
Poisson noise or Quantum noise.

.23

Poisson noise

o Probability mass function:

ak
Pr[N = k] = Fe‘“, for k=0,1,...

o Mean and variance:

uy=a and of=a

O Is used to statistically characterize the distribution of
photons per unit of area.

o Important for normal camera images, and medical image
systems using X-rays and gamma-rays.

. 24
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Poisson noise

o Previous slide gave that Poisson noise has equal mean
and variance: iy = 0% = a
o It can be approximated with Gaussian noise with
— 42 —
Uy =0y =a
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Poisson noise

o The noise variance depends linearly on the image
intensity (lab exercise)

Noise variance

Pixel value

.27
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Poisson noise

o The standard
deviation

; 120
oy =va 20 §

100
80
60

O increase with the
signal value

Uy =a

o But the signal to 120 o
noise ratio 20 40 60 80 100120

a/va=+a

improvel!

The output voltage

o In the end, the output voltage of the sensor
array, per detector element, is:

V=g-1+0+AV

| = incident radiant flux

g =gan factor These two are determined by
o = offset voltage the material and the design

AV = noise voltage <:| Also determined by the
material and the design but
also temperature, blooming,
after-exposure, etc




Fixed pattern noise

o In the ideal world: gain (g) and offset (o) are
constant over the sensor array

o In the real world: both g and o vary over the
sensor array
= Small variations in standard camera chips
m Larger variations in many IR-sensors
o May even vary over time (for IR sensors)
O Hot pixels: strong local variation in g or o

o Dead pixels: g~ 0

. 29

Dynamic range

o The dynamic range is the SNR of the
largest detectable signal V.,

DR = 20 -10%0g ez

o Typical values
= CMOS: 40-60 dB
= CCD: 60-70 dB
= Human eye: > 90 dB

.31

Signal to noise ratio

o AV = The overall noise voltage measured at the
output

o V = the actual output voltage

SNR = 20 -10%0g A7

o Darker images have a lower SNR than brighter
images

. 30

3 chip color cameras

sensor array for red light

a2

| sensor array for
'| blue light

A\ 4

sensor array for green light

3 identical standard chips

2 semi-transparent mirrors that
refract different wavelengths

. 32
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3 chip color cameras

0 Based on standard “black-and-white” sensor
chips (3 identical sensor chips)
o0 The 3 sensor arrays need to be aligned with
tolerances smaller than the inter-pixel distance
o Gives good performance
m |s expensive
m Only used in professional cameras

p. 35

Bayer filters

o A Bayer filter is an optical filter placed
over the sensor

o A common Bayer filter is shown below

p. 34

1 chip color cameras

o To reduce cost:
m Use one sensor array
= Place a color filter on top of each detector element

m Each detector element is now sensitive to only a specific
wavelength range

m Reduces the fill factor for each range

m The colors are not measured at the same places
May give color-aliasing

p. 36

Color post-processing

o We can see the image detected by the sensor as a
monochrome (grayscale) signal (the "raw” image)

o An RGB signal (3 components per pixel) is then
produced by interpolation from the raw image, using a
set of space-varying filters for each of the three
components (demosaicking)

o Note: two types of filtering!

= An optical filter on the light before the sensor

= An interpolation filter on the image signal to produce RGB signal
o In the simplest case the latter filters are linear

= May produce color aliasing

o More advanced cameras have non-linear filters to
reduce color aliasing




Bayer filters P Bayer filters
A small part of a Bayer image is shown below, left, with a corresponding Bayer
pattern, right. Compute the numerical values of Gimage, the resulting green (G)
color plane, for the small part of the image. 0 0 o] 1121110
Assume that pixels outside the small part of the image are zero. 0 1 0 1l 4] 6] 4| 1
Assume that the Bayer pattern repeats itself outside the small part of the image. 1 1 2 ol12l 9| 2
of o] o] o] 0 Rlg || : NEREE : o3 8] 16|20| 16| 8 Sl el g
ol o 1] o] 0 Gl B : E : 3 13 8]618”’8/\ 1| 4] 6] 4] 1
0| 1] 2] 1|0 ' : : : Gmaskimage Gmaskimage*w 16 \/ 4| ol 12| 9] 4
11 2/3] 2] 1 / 8| 16/20[ 16| 8
NEREEE 1 1 0.5/ 0.5/ 0.5 0.5| 0.5 sl 16l 18 16| 8
..... 0 D
B ; B ” Gi - 1 1 1 0.5/ 0.5/ 0.5 0.5| 0.5 /8
ayer image ayer pattern image .
’ 3 WS ¢ 1 1 0.5/ 0505] 05/ 0.5 Gimage
Use normalized averaging with the interpolation kernel w shown below (center is 1 1 1 0.5 0.5/ 0.5/ 0.5 0.5
marked in boldface). 1 1 0.5/0.5[ 0.5 0.5/ 0.5
11271 Gmask Gmask*w
1 1
#1211 ]=12[4]2 38
1121
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Stripe filters,
Bayer filters, other variants an alternative to Bayer filters

Dark area is a cell that
represents one "pixel”

R|G|R|G|R R|G|R|G|R clelw|c|w|c|c|w|cC RIG[BIR|G| JEfe[Y|c[c| [RICS|B|CG|R|G|B|CG|R
cle|c|B|G c|r|c|B|[c| |w|c|w|c|c|w|c|c|w Bllc|BliRlc| REc|YEc [BC|B|GIEGC|B]|C[R
B R
Rlc|rR[G[R| [Rlc[rR[c|r]| [w]|c[c[wlc|c|w|c]|w BICG[PIEC) EECIYEC| EHC|BI CIGC|B|GE
R|G|B|R|G ClG|Y [€] G R{G|B|G|R|G|[B|G|R
cle|c|s|a cle|c[r]c clwlc|a|w|c|w|c|c
R|IG|IB|R|G C| G|Y € G R|G|B|G|R|[G|B|G|R
R[c[rR[c[RrR R[c[R|G[R clae|w|e|w|a|c|w]|c
Extra green
R+2G+B 6R+8G+2B 12W+12G+8C
per cell per cell per cell

Easy to implement

May produce moiré effects
due to color aliasing
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1 chip color cameras

o0 Standard RGB-filters
m Each color channel is rather narrow
= blocks more photons = less effective
o Cyan-Yellow-Magenta (white) filters
= Magenta = red + blue, Cyan = blue + green
m Yellow = red + green, White = red+green+blue

m Each color channel is wider than standard RGB
= blocks fewer photons = more effective

m Post-processing needed to convert to RGB
O The eye is more sensitive to green light and less
to blue light

= [t makes sense to have more green detectors and
fewer blue detectors

Color processing

o0 The perception of color is complex

= Humans tend to perceive color independent of
illumination

m A color camera makes a measurement of physical
quantities: very dependent on illumination
o White balancing:

m Transforms the color measurements to make what we
perceive as white have equal RGB-values

m Automatic or manual
o0 The color information may also be converted to
some other color space than RGB
(e.g. HIS or XYZ)

p. 42

1 chip color camera

o Most consumer cameras output only the
interpolated image
(typically compressed using JPEG)

o In more advanced cameras, the raw un-
interpolated image can be read out from the
camera and processed externally by the user

The video camera

0O Basic idea: take one image after another in
sequence (temporal sampling)

O Legacy television standards (PAL, NTCS,...)
require interlaced video

= Take one half-image with all odd rows and then another
half-image with all even rows, odd, even, etc

=> 0dd and even rows are exposed at different times
m Motivation: better bandwidth usage in broadcasted TV

o Today, progressive scan (or non-interlaced) video
has replaced interlaced video to a large extent
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Interlaced vs. progressive scan

Interlaced scan
E.g., one “half image”
at 50 Hz =

one “full image” at 25 Hz

Progressive scan
E.g., one full image
at 25 Hz

Shading correction

o Depending on the application and the sensor we
may want to adjust the gain “g” and offset “0” of
each pixel to assure that the resulting image is
constant for a constant illumination. Takes care
of

= Vignetting (see a lecture next week)
m Fixed pattern noise

= Gradients in the illumination of the scene

“ 0

p. 46

Interlaced vs. progressive scan

ES3a0EEREE
PP ielela] [ 1]

Sometimes interlaced video (top) is represented as a
sequence of "complete” images, but the even and odd lines
are taken at different time points (bottom)

De-interlacing can be made by interpolation both spatially
and over time
= loss of spatial resolution

Shading correction

o By projecting two different and constant
illuminations into the camera, we can measure
the individual deviations from a constant image
in all pixels and compute adjustments of each
pixel’'s gain and offset

o The shading correction is then made externally
as part of the post-processing




Modern consumer cameras

p. 49

o0 The effects described here relate to any type of
light measuring digital camera

0 Modern cameras (e.g., in mobile phones),
however, include increasingly more and more
sophisticated processing of the image and
control of the camera
m Automatic exposure time control
= Automatic focus
= Red-eye removal
= Color balancing
= Motion compensation
|

0 These processes are not covered in this course




