
The Geometry of Spinning Lidar Sensors

Per-Erik Forssén

November 26, 2021

1 Introduction

This document describes the geometry of spinning lidar sensors such as Ouster
OS-1 64 and Velodyne HDL-64E. In particular we will look at motion based
scan correction (the equivalent of a rolling shutter distortion correction on a
camera).

2 Scan to point-cloud mapping

Sensors such as Ouster OS-1 64 [5] and Velodyne HDL-64E [9] are spinning
lidars. At each point in time, 64 range values1 are received from different angles.
By spinning the sensor a full circle, one so called point cloud can be obtained,
see figure 1. By spinning at different rates, temporal resolution can be traded
for angular resolution. E.g. in the Kitti dataset2, the sensor spins at 10Hz,
which results in 2000 directions [1]. By switching to 5Hz, 4000 directions would
be obtained instead in each point cloud.

2.1 Range images

The lidar outputs data in the form of a range image (which contains distances
computed from time of flight), see figure 1, top, for an example of a range
image. The lidar also outputs a reflectance image (which contains received
signal strengths), but this will not be discussed here. The points in a range
image can be unpacked to raw point clouds, using the calibration angles (φ, θ)
(pitch and yaw) provided with the dataset, by converting each angle pair to
a unit direction vector x̂(φ, θ) and scaling this with the corresponding range
value. By denoting the pixels in the range image by rkl, with k ∈ [0, 63] for 64
channels, and l ∈ [0, 869] for 870 directions, we get the following expression:

Xraw(t) = rklx̂k ,where x̂k =

 cos θk cosφk
− sin θk cosφk

sinφk

 . (1)

1There are also 16, 32, and 128 channel lidars, but 64 is more common.
2At http://www.cvlibs.net/datasets/kitti/raw_data.php the lidar scans can be found.

1



Figure 1: Top: Range image with 64 lines and 870 directions (from the Velody-
neSLAM dataset). Bottom: The unpacked point cloud in the x-y plane. Colors
indicate different channels.

The scan time in (1) is t = t0 + l∆t, for some start time t0 and time delta
∆t. E.g. for 870 directions and a 10 Hz spin rate, we have ∆t = 0.1/870 ≈ 0.115
ms.

The points Xraw(t) in the raw scan lines, can now be mapped to the car
coordinate system using the expression:[

Xcar(t)
1

]
=

[
R(t) 0
0T 1

] [
Xraw(t)

1

]
. (2)

The result of (1) and (2) is shown in figure 1. (Data from the VelodyneSLAM
dataset3).

We can express the rotation in (2) as a matrix exponentiation R(t) =
eθ(t)[n̂]× , where n̂ is the axis of rotation (here the up vector). Assuming a
constant spin rate, the rotation angle becomes θ(t) = 2π(t − t0)/T . Here t0
is the time at the start of the scan, and T = 0.1 is the revolution period (as-
suming 10Hz). The [·]× is the cross product operator. It generates the unique
skew-symmetric matrix that satisfies [a]× b = a× b.

Using Rodrigues’ rotation formula [4], the rotation can be expanded into:

R(t) = eθ(t)[n̂]× = I + sin θ(t) [n̂]× + (1− cos θ(t)) [n̂]
2
× (3)

3See https://www.mrt.kit.edu/z/publ/download/velodyneslam/dataset.html.

2



Figure 2: Scan with missing data, from the VelodyneSLAM dataset. Each of the
870 columns in the original image corresponds to one set of 64 laser readings,
but here they have been de-staggered to get a nice image, by applying cyclic
shifts to the rows. As the data dropout starts at a particular time, the sawtooth
pattern is revealed.

In the special case of n̂ = [0, 0, 1]T we get:

R(t) =

cos θ(t) − sin θ(t) 0
sin θ(t) cos θ(t) 0

0 0 1

 (4)

2.2 De-staggering

To reduce interference between beams, both the OS-1 and HDL64E have their
lidar beam angles arranged in a sawtooth pattern. This pattern is often undone
by applying a cyclic shift to the rows of the range image. This operation is
called de-staggering. Indeed, this has been done on the image in figure 1.

If we look at a scan with data dropouts, the sawtooth pattern is revealed,
see figure 2. The reason for this is that the dropout starts at a particular time.
If motion compensation is to be applied, it is important that de-staggering is
not applied, as the image columns are then no longer recorded at the same time.

In the Ouster source code4 de-staggering is applied at the host, according
to a calibration table. We can thus simply omit de-staggering when we want to
do motion compensation.

2.3 Motion compensation

Assuming that we have point clouds in the car coordinate system, see (2), we are
in a position to apply motion compensation, aka. scan correction. This means
that we should make use of the continuous-time motion of the car to convert
car coordinates into world coordinates, see figure 3.

The motion trajectory of the car can be expressed as one signal R(t) ∈ SO(3)
for the orientation, and one p(t) ∈ R3 for the position [7]. For a motion ex-
pressed in the world coordinate system, motion compensation should be applied
as follows: [

Xworld(t)
1

]
=

[
R(t) p(t)
0T 1

] [
Xcar(t)

1

]
. (5)

A preliminary registration of a sequence of Xcar point sets, e.g. using [2,

3], would result in a discrete sequence of poses {Rn,pn}Nn=1. Such a pose
sequence can then be interpolated using a split spline in (R3,SO(3)) see [7], to

4See https://github.com/ouster-lidar/ouster_example

3



2 0 2

2

0

2

Car motion

sensor ray
car position

2 0 2

2

0

2

Xcar

2 0 2

2

0

2

Xworld

Figure 3: Illustration of motion compensation in 2D. Left: sensor posi-
tions(RED), sensor rays(BLUE) and walls (GREEN). Centre: range values un-
packed to the car coordinate system. Right: Motion compensation results in a
corrected point set.

obtain the continuous signals needed in (5). Such a motion estimate is however
typically much smoother than what actually took place. For more detailed
motion estimates, it is thus common to also use an IMU.

2.4 Motion estimate from the IMU

A common way to obtain a motion estimate is to use the motion sensed by an
inertial measurement unit (IMU). Lidar sensors such as the Ouster OS-1 have
a built in IMU, and many cars are also equipped with intertial sensors. As an
IMU senses linear acceleration and angular velocity, we first need to integrate
the signal to obtain a motion estimate. Assuming we have signals ω(t) and
a(t) from the IMU, corresponding to angular velocities and linear accelerations,
respectively. These can be integrated into orientations and displacements:

Θ(t) =

∮ t

t0

exp((ω(t)− bgyro)dt) , and p(t) =

∫ t

t0

∫ t

t0

(a(t)− bacc)d
2t . (6)

Here bgyro and bacc are bias vectors, that are in general unknown. These are
slowly drifting over time, but for practical purposes they can be assumed to be
constant. Alternatively, if a motion estimate from a preliminary scan registra-
tion is available (see section 2.3) this could be used to estimate the bias.

The integrals (6) need to be evaluated numerically, e.g. using a forward
Euler scheme. Note also that the orientation integration is not linear, and
should be computed while respecting the properties of the rotation group. This
implies that small delta rotations should be generated, and multiplied together
in sequence, e.g. using unit quaternions [8]. Given the integrated signals we can
now do motion compensation according to:[

Xworld(t)
1

]
= T−1

c2i

[
Θ(t) p(t)
0T 1

]
Tc2i

[
Xcar(t)

1

]
. (7)

4



Compared to (5) we here have the additional transformation Tc2i. This is a
mapping from the CCS to the IMU Coordinate System (ICS). Note that it has
to be applied twice, first to move from car coordinates to IMU coordinates, and
then after the motion estimate has been applied, we need to go back to the
original frame again (if we are to have world coordinates of the car, and not the
IMU) [6].

References

[1] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urta-
sun. Vision meets robotics: The KITTI dataset. International Jour-
nal of Robotics Research (IJRR), 32(11):1231–1237, September 2013.
https://doi.org/10.1177/0278364913491297.

[2] Felix Järemo Lawin, Martin Danelljan, Fahad Khan, Per-Erik Forssén, and
Michael Felsberg. Density adaptive point set registration. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, Salt Lake City, Utah,
USA, June 2018. Computer Vision Foundation.

[3] Felix Järemo Lawin and Per-Erik Forssén. Registration loss learning for deep
probabilistic point set registration. In International Virtual Conference on
3D Vision (3DV 2020), November 2020.

[4] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathematical
Introduction to Robotic Manipulation. CRC Press, 1994.

[5] Ouster. Os-1-64/16 high resolution imaging lidar software user
guide. https://levelfivesupplies.com/wp-content/uploads/2019/03/
OS-1-User-Guide-Software.pdf.

[6] Hannes Ovrén and Per-Erik Forssén. Gyroscope-based video stabilisation
with auto-calibration. In IEEE International Conference on Robotics and
Automation ICRA’15, Seattle, USA, May 2015. IEEE. VR Project: Learn-
able Camera Motion Models, 2014-5928, SSF Project: The Virtual Photo
Set, IIS11-0081.

[7] Hannes Ovrén and Per-Erik Forssén. Trajectory representation and land-
mark projection for continuous-time structure from motion. International
Journal of Robotics Research, 38(6):686–701, May 2019. Accepted 2019-01-
23.

[8] Erik Ringaby and Per-Erik Forssén. A virtual tripod for hand-held video
stacking on smartphones. In IEEE International Conference on Computa-
tional Photography (ICCP). IEEE, IEEE, May 2014.

[9] Velodyne. Velodyne hdl-64e user manual. https://www.velodynelidar.

com/lidar/products/manual/HDL-64E%20Manual.pdf.

5


